BTS SYSTEMES ELECTRONIQUES

E 6-2 – PROJET TECHNIQUE

DOSSIER DE PRESENTATION ET DE VALIDATION DU SUJET DE PROJET

Groupement académique : Nancy, Metz, Reims, Strasbourg		Session: 2008
Lycée ou Centre de fe	ormation : Louis Couffignal	
Ville: STRASBOUR	G	
N° du projet : 1 Nom du projet : VAE – Vélo à Assistance Electrique		2
Rappel / décompositio	n du projet :	Nb. d'étudiants concernés sur 14
Projet N° 1 − 1 : Contrôleur de moteur "brushless" pour VAE		5
Projet $N^{\circ} 1 - 2$: B.M.S. – Battery Management System (pour batterie "LiPo")		3
Projet N° $1-3$: Tableau de bord du vélo		3
Projet N° 1 – 4 : Chargeur de batterie "LiPo"		3

1. Présentation et situation du projet dans son environnement

1.1 Contexte de réalisation

Projet proposé et suivi par :	M : CREMMEL Marcel professeur ⊠ électronique □ physique appliquée M : HENTZ Rodolphe professeur ⊠ électronique □ physique appliquée M : HAESSIG Dominique professeur □ électronique ⊠ physique appliquée		
Statut des étudiants Candidats scolarisés :	en temps plein ⊠	en alternance Etudiant E1:	
Constitution de l'équipe de projet :			
Projet développé :	au lycée ou en centre de formation	en entreprise ☐ mixte ☒	
Type de client ou donneur d'ordre :	Entreprise partenaire : oui Origine du projet : - idée : lycée - cahier des charges : lycée Suivi du projet : lycée	□ entreprise ⊠ □ entreprise ⊠	
Si le projet est développé en partenariat avec une entreprise :	Nom de l'entreprise : VELECTRIS – www.velectris.com Adresse de l'entreprise : 143, rue Eugène Schneider 13320 BOUC BEL AIR Responsable de l'entreprise : Pascal NUTI Chef de projet ou contact dans l'entreprise : Pascal NUTI Tél. : 0 872 319 723 Courriel : info@velectris.com		

BTS Systèmes électroniques

Page 1 sur 57

Budget alloué :	Montant:
Origine du financement :	Etablissement : évalué à 1000€ Entreprise : fourniture d'un kit "VAE" : contrôleur, batterie LiPo et moteur BLDC Autre :

1.2 Situation du projet

Dans quel(s) champ(s) technologique(s) s'insère le projet à étudier :	☐ Télécommunication, téléphonie et réseaux téléphoniques ;
a etudier:	☐ Informatique, télématique et bureautique ;
	☐ Multimédia, son et image, radio et télédiffusion ;
	☑ Electronique embarquée ;
	☐ Electronique médicale ;
	☐ Mesure, instrumentation et micro-systèmes ;
	☐ Production électronique.

1.3 Objectifs professionnels du projet

Domaines d'Activités Professionnelles abordés et développés avec le projet : (cf. le Référentiel des Activités Professionnelles)		
Etude et développement	Oui	
Etude technique	Oui	
Qualité et contrôle	Oui	
Intégration		
Maintenance		
Production	Oui	
Suivi d'affaires	Oui	
Relation client-fournisseur	Oui	
Coopérer et communiquer en langue française et langue anglaise	Oui	

2. Présentation du projet

Le projet est constitué d'un ensemble d'objets techniques qui, installés sur un vélo traditionnel, le transforme en "Vélo à Assistance Electrique" ou VAE.

Ces OT sont:

- Un moteur de type "brushless" à aimants permanents monté dans le moyeu de la roue avant, avec un nombre de pôles élevés (40) permettant de se passer de réducteur mécanique Ce moteur est construit par une société chinoise sur les spécifications de VELECTRIS, l'entreprise partenaire. Il est fourni monté dans une jante de vélo.
- Un contrôleur (ou variateur) adapté à ce moteur
- Un tableau de bord à fixer sur le guidon
- Une batterie d'accumulateurs lithium-polymère équipée d'un module de contrôle (BMS)
- Un chargeur de batterie

Session 2007:

Les étudiants de la session 2007 ont déjà travaillé sur ce projet. Leurs travaux ont permis à la société partenaire de réaliser une première série de prototypes du contrôleur et du tableau de bord. Ils ont été confiés à quelques clients de Velectris pour valider les fonctions de service. L'essentiel donne satisfaction, mais certains points sont à corriger :

- la fiabilité du contrôleur est médiocre : les défaillances du module de commande du moteur sont trop fréquentes
- l'heure du tableau de bord est perdue à la déconnexion du contrôleur (le tableau de bord ne comporte pas de pile de sauvegarde pour des raisons de consommation).

Les travaux sur le BMS n'ont pas abouti à des résultats exploitables pour la réalisation d'un prototype. Le chargeur n'a pas été traité en 2007.

Session 2008:

Les étudiants sont chargés de :

- valider les solutions aux défauts constatés sur le contrôleur et le tableau de bord
- valider les structures du BMS et du chargeur de batterie

Les activités associées sont :

- mise à jour technologique,
- adapter les schémas structurels avec les nouvelles solutions proposées,
- valider ces nouvelles structures par des tests sur une maquette.

3. Cahier des charges fonctionnel

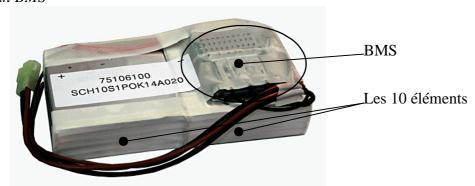
3.1 Expression du besoin

Situation actuelle:

La société VELECTRIS commercialise des kits d' "assistance électrique" à monter par le client sur son propre vélo. Le kit est constitué :

- d'un moteur "moyeu" de type brushless à aimants permanents

- du prototype du nouveau contrôleur "Ki":



du prototype du tableau de bord "Véo" :

 d'une batterie d'accumulateurs lithium polymère de 36V (10 éléments) et 8Ah de 1,55kg, équipée d'un BMS

 d'un lot d'accessoires comportant notamment un capteur de pédalage et une poignée d'accélération à effet Hall

- d'un chargeur de batterie "LiPo" de fabrication chinoise

Le contrôleur est conforme à la législation française (directive 2002/24/CE du parlement européen) qui limite la puissance électrique à 250W et ne fournit de l'assistance que si le cycliste pédale et la vitesse est inférieure à 25km/h.

Evolution des produits :

M. Pascal NUTI, Pdg de la société, souhaite, à la demande de ses clients, une évolution des fonctions de service ainsi qu'une mise à jour technologique de certains de ces produits.

Les nouvelles fonctions de service à ajouter au prototype actuel sont en caractères gras.

Fonctions de service du contrôleur :

- Pour le client :
 - Fonctionnement en assistance au pédalage et / ou en propulsion conformément à la législation du pays
 - Choix du profil d'assistance :
 - Normal : le contrôleur privilégie l'autonomie
 - Boost: l'assistance est maximum.
 - Freinage par récupération dosable. Commande par poignée inversée au guidon gauche ou par les leviers de frein équipés de capteurs

- Affichage sur le tableau de bord optionnel des informations utiles au cycliste (vitesse, distance parcourue, état de la batterie, etc.)
- Antivol par clef codée (court-circuit du moteur)
- Fourniture et commande de la tension pour l'éclairage du vélo
- Indicateur sonore en cas d'anomalie
- Indice de protection : IP53
- Connexion d'un module GPS à liaison série
- Sauvegarde journalière des paramètres de roulage sur une "SD Card" amovible. Chaque seconde sont sauvegardées dans un fichier "binaire": les coordonnées GPS, les tensions et courant batterie ainsi que l'heure. La date est donnée par le nom du fichier (JJMMAA.DTA). Ces données sont exploitées par un logiciel spécifique sur PC.
- Pour le service technique de l'entreprise : le "tableau de bord" ou un logiciel sur PC permet de fixer les paramètres du contrôleur et de contrôler le fonctionnement du moteur (si connecté), sans ouvrir le boîtier :
 - Adaptation à la législation de chaque pays : Pmax de 250W à 750W, assistance ou propulsion à 100%, vitesse maximum, etc. (voir directive 2002/24/CE)
 - Adaptation au moteur : nombre de pôles, caractéristiques de fcém (sinus ou trapèze) et de couple, avec ou sans capteurs de position à effet Hall, avance de phase
 - Adaptation à l'équipement connecté : poignée d'accélération et/ou de freinage par récupération, leviers de frein, capteur de couple, tableau de bord
 - Caractéristiques électriques en fonctionnement : vitesse et courants moteur, tension et courant batterie
 - Table de codage des capteurs à effet Hall
 - Décalage de phase entre le champ rotorique et les capteurs

Fonctions de service du tableau de bord :

- Pour le client :
 - Accessoire optionnel du contrôleur
 - Affichage: vitesse instantanée, vitesse moyenne sur le parcours, distance totale (pas de r.a.z. possible), distance partielle, énergie disponible, heure, durée du parcours et indicateurs de profils d'assistance et d'antivol
 - Rétro-éclairage monostable sur commande
 - Commandes: M/A, choix du profil, éclairage, r.a.z. compteur partiel, mise à l'heure de l'horloge
 - Paramétrages : diamètre de la roue, capacité de la batterie, heure
 - Indice de protection : IP53
 - Autonomie de la pile supérieure à 2 ans
- Pour le service technique de l'entreprise :
 - Terminal de dialogue pour le paramétrage du contrôleur (voir ci-dessus), du BMS et du chargeur

Fonctions de service de l'ensemble "batterie – BMS" :

L'élément le plus fragile du kit "VAE" est la batterie au lithium. En effet, avec le modèle actuel, de nombreux clients constatent des défaillances pendant la période de garantie et renvoient la batterie pour un échange.

Cela nuit aux finances de la société et aussi à son image.

Ces défaillances sont dues à une mauvaise surveillance des éléments de la batterie pendant la charge et la décharge.

Les "packs" vendus par VELECTRIS sont équipés d'un "BMS" (Battery Management System) conçu par le fabricant des batteries KOKAM. Cette société chinoise admet les imperfections de son BMS et est prête à acheter le "design" de la nouvelle version pour l'intégrer dans ses packs.

La version améliorée du BMS réalise les fonctions de service suivantes :

- Pour le client :
 - Respect du nombre de cycles de charge/décharge par un équilibrage individuel du courant de charge de chaque élément
 - Coupure monostable du courant en cas de surintensité de courte durée
 - Coupure bistable du courant en cas de surintensité prolongée
 - Coupure bistable en cas de décharge importante
 - Coupure bistable en cas de surchauffe
 - Rétablissement des flux d'énergie par bouton poussoir
- Pour le service technique de l'entreprise :
 - Paramétrage du nombre d'éléments (10 maximum)
 - Possibilité de coupler plusieurs BMS pour contrôler des pack de plus de 10 éléments
 - Paramétrage des seuils de charge et de sécurité sans ouvrir le pack
 - Diagnostic de chaque élément en cours de charge via un logiciel sur PC: tension, courant de charge, courant dérivé, température.

Fonctions de service du chargeur de batterie :

Les chargeurs vendus par VELECTRIS donnent satisfaction. Toutefois, la société souhaite disposer d'une version améliorée à l'usage de son service technique proposant les fonctions de service suivantes :

- Réglages fins des paramètres de charge depuis un logiciel de contrôle sur PC
- Enregistrement des caractéristiques de charge : tension, courant, température, résistance interne sur 24 heures maximum pour affichage ultérieur sur PC.
- Affichage en temps réel des caractéristiques de charge si PC connecté.
- Alimentation "mobile" par batterie d'automobile (12V à 15V)

3.2 Contraintes et limites d'étude

Contrôleur:

Pour les fonctions dont ils ont la charge, les étudiants :

- sélectionnent les composants permettant leurs réalisations avec un coût de revient compatible avec la concurrence
- adaptent les structures matérielles fournies
- réalisent une maquette
- adaptent les fonctions logicielles fournies
- valident ces nouvelles structures sur la maquette.

Il n'est pas demandé de valider toutes les fonctions de l'OT complet réalisées en grande partie par des fonctions logicielles.

Si le projet abouti, l'intégration dans un boîtier conforme et le développement du logiciel final seront effectués par un sous-traitant.

Tableau de bord:

Pour les fonctions dont ils ont la charge, les étudiants :

- sélectionnent les composants permettant leurs réalisations avec un coût de revient compatible avec la concurrence
- adaptent les structures matérielles fournies
- réalisent une maquette
- adaptent les fonctions logicielles fournies
- valident ces nouvelles structures sur la maquette.

La maquette utilisera le boîtier, le LCD et le clavier du prototype "Véo".

Il n'est pas demandé de valider toutes les fonctions de l'OT complet réalisées en grande partie par des fonctions logicielles.

Si le projet abouti, l'intégration définitive dans le boîtier sera effectuée par un sous-traitant.

B.M.S. :

Pour les fonctions dont ils ont la charge, les étudiants :

- sélectionnent les composants permettant leurs réalisations avec un coût de revient compatible avec la concurrence
- adaptent les structures matérielles fournies
- réalisent une maquette
- adaptent les fonctions logicielles fournies
- valident ces nouvelles structures sur la maquette.

Il n'est pas demandé de valider toutes les fonctions de l'OT complet réalisées en grande partie par des fonctions logicielles.

Si le projet abouti, l'intégration dans le pack d'accumulateurs et le développement du logiciel final seront effectués par un sous-traitant.

<u>Chargeur de batterie</u> :

Pour les fonctions dont ils ont la charge, les étudiants :

- sélectionnent les composants permettant leurs réalisations
- adaptent les structures matérielles fournies
- réalisent une maquette
- adaptent les fonctions logicielles fournies
- valident ces nouvelles structures sur la maquette.

Il n'est pas demandé de valider toutes les fonctions de l'OT complet réalisées en grande partie par des fonctions logicielles.

Note:

La maquette dont chaque étudiant a la charge réalise une partie des fonctions de l'OT.

L'interconnexion des maquettes en phase finale réalise une maquette de l'OT complet pour la validation de certaines fonctions de service.

3.3 Caractérisation des fonctions de service

Contrôleur:

- Pour le client :
 - Alimentation: batterie "Ni-Mh", "Li-Ion" ou "Li-Po" de 36V à 72V nominal
 - Moteur : 750W max, modèle brushless, avec ou sans capteur à effet Hall et f.c.é.m. sinusoïdale ou trapèze, nombre de pôles paramétrable.
 - Assistance au pédalage : suivant l'équipement du vélo :
 - Couple moteur proportionnel au couple exercé sur les pédales
 - Couple moteur proportionnel à la vitesse de pédalage
 - Profil d'assistance :
 - Normal : algorithme à déterminer
 - Boost : le couple moteur n'est limité que par les possibilités du moteur et de la batterie.
 - Freinage par récupération :
 - Couple de freinage proportionnel à l'angle de rotation de la poignée de freinage ou la position des leviers de frein. Le couple est limité par les possibilités du moteur et de la batterie et pour éviter un blocage de la roue (ABS)
 - Si le moteur tourne plus vite que sa vitesse nominale (en forte descente par exemple), le couple de freinage ne peut plus être contrôlé. Il sera annulé si le courant devient excessif et le cycliste est prévenu par un signal sonore.
 - Affichage sur le tableau de bord optionnel des informations utiles au cycliste
 - Par liaison I2C non isolée.
 - Transmissions régulières de la durée entre 2 changements d'état des capteurs (pour calculer la vitesse), du nombre de changements d'états depuis la 1° mise en service (pour calculer la distance parcourue) et de l'état de la batterie.
 - Transmission sur demande du profil d'assistance et de la présence de la clef codée.
 - Le tableau de bord est alimenté par les signaux SDA et SCL
 - Antivol par clef codée
 - Utilisation de la technologie "iButton"
 - Action : blocage du moteur par court circuit des bobinages du stator
 - Fourniture et commande de la tension pour l'éclairage du vélo
 - Tension continue au choix : 6V ou 12V, ondulations inférieures à 1V
 - Puissance max: 10W
 - Activation depuis le tableau de bord.
 - Consommation propre minimale pour privilégier l'autonomie
 - Indicateur sonore en cas d'anomalie
 - Niveau : 80dBA à 1m
 - Sauvegarde journalière des paramètres de roulage sur une "SD Card"
 - Fichier de type "binaire"
 - Rythme de sauvegarde : 1 élément par seconde quand le vélo avance
 - Données sauvegardées : chaque élément de 16 octets comporte : l'heure, les coordonnées GPS, la tension et le courant batterie.
- Pour le service technique de l'entreprise :
 - Liaison USB1 au PC
 - Mémorisation non volatile des paramètres de configuration

Tableau de bord:

- Pour le client :
 - Liaison par bus I2C.
 - Réception régulière de la durée entre 2 changements d'état des capteurs (pour calculer la vitesse), du nombre de changements d'états depuis la 1° mise en service (pour calculer la distance parcourue) et de l'état de la batterie.

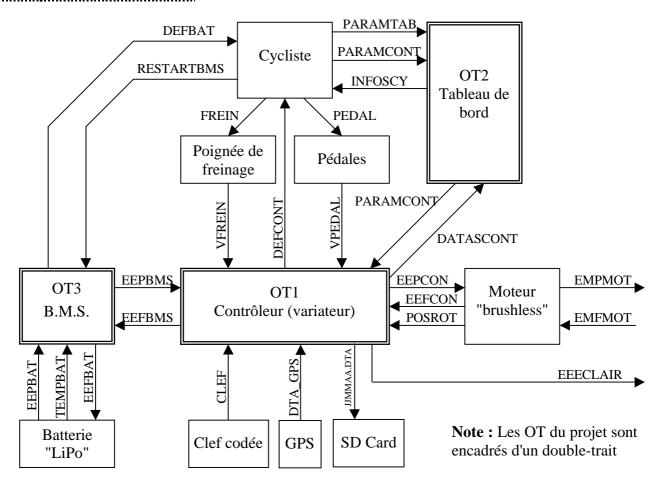
- Transmission des ordres de demande du profil d'assistance et de la présence de la clef codée et réception des réponses
- Alimentation par les signaux SDA et SCL
- Affichage LCD: graphique N&B S64128G de DISPLAYTECH (64x128 pixels). Le boîtier du prototype est conçu pour ce modèle.
- Rétro-éclairage monostable de 5s sur commande
- Clavier: celui du boîtier du prototype (4 boutons poussoirs)
- Maintien de l'horloge par une pile. Autonomie supérieure à 2 ans
- Pour le service technique de l'entreprise :
 - Terminal de dialogue pour le paramétrage du contrôleur (voir ci-dessus), du BMS et du chargeur

Ensemble "batterie – BMS":

- Pour le client :
 - Indicateur lumineux en cas d'anomalie
 - Rétablissement des flux d'énergie par bouton poussoir
- Pour le service technique de l'entreprise :
 - Nombre d'éléments : 1 à 10
 - Précision de mesure de la tension des éléments : inférieure à 0,5%
 - Seuil du "fusible électronique" réglable entre 0A et 20A
 - Compensation des courants de charge : 0A à 0,3A
 - Seuils de charge des éléments ajustables
 - Seuils de sécurité paramétrables :
 - Courant max de charge : adaptée à la batterie utilisée
 - Courant max de décharge : adaptée à la batterie et au moteur utilisés
 - Tension minimum de décharge par élément : 2,70V à 3,10V par pas de 10mV
 - Température maximum : 50°C à 100°C
 - Liaison I2C opto-isolée pour le couplage "intelligent" de plusieurs BMS d'un même pack et la liaison avec un éventuel PC de contrôle.

Chargeur de batterie "LiPo" :

- Alimentation: 12V à 15 DC (batterie automobile)
- Technologies de batterie "Ni-Mh", "Li-Ion" ou "Li-Po"
- Paramètres de charge :
 - Nombre d'éléments : 1 à 10
 - Courant de charge max : 3A
 - Algorithme adapté à la technologie
 - Seuil de température max : réglable de 50°C à 100°C
- Mesure des caractéristiques de charge :
 - Tension: 0V à 50V, précision 0,2% FS, résolution 1mV
 - Courant: 0 à 3A, précision 1% FS
 - Température : 20°C à 100°C, précision 1°C
 - Résistance interne : 0 à 100mΩ, précision 5% FS
- Mémoire d'enregistrement des mesures : 1 cycle de mesure par seconde pendant 24 heures, soit 5 octets x 3600 x 24 = 512ko.
- Liaison USB1 au PC
- Mémorisation non volatile des paramètres de configuration


4. Analyse fonctionnelle interne

4.1 Diagrammes sagittaux

Trois diagrammes sagittaux sont proposés pour une meilleure lisibilité. Ils correspondent aux 3 situations typiques d'emploi :

- Exploitation sur un vélo
- Paramétrage du contrôleur et du BMS au service technique de VELECTRIS
- Charge et contrôle de la batterie au service technique de VELECTRIS

4.1.1 Exploitation sur un vélo :

Descriptions des échanges et liens :

- Batterie "Li-Po" \leftrightarrow B.M.S.
 - EEPBAT : Energie Electrique fournie par la BATterie (l'essentiel pour la Propulsion)
 Nature : tension DC de 36V nominal. Le courant est fonction du besoin
 - EEFBAT : Energie Electrique restituée à la BATterie en phase de freinage "électrique"
 Nature : courant PWM de charge de valeur moyenne proportionnelle au couple de freinage réglé par le cycliste (VFREIN).
 - TEMPBAT : Informations : température du pack
- $B.M.S. \leftrightarrow Cycliste$
 - DEFBAT : Information indiquant une défaillance sur la batterie avec pour conséquence la coupure de l'alimentation en énergie (fusible électronique)

Nature: lumineux

RESTARTBMS : Ordre de réarmement du fusible électronique
 Nature : action momentanée sur un bouton poussoir

■ B.M.S. ← Contrôleur

- EEPBMS: Energie Electrique fournie par la batterie via le BMS. Protection par fusible électronique
 - Nature: tension DC de 36V nominal. Le courant est fonction du besoin
- EEFBMS : Energie Electrique restituée à la batterie via le BMS en phase de freinage "électrique". Protection par fusible électronique
 - Nature : courant PWM de charge de valeur moyenne proportionnelle au couple de freinage réglé par le cycliste (VFREIN).
- Contrôleur ↔ Moteur brushless
 - EEPCON: Energie Electrique de Propulsion fournie par le CONtrôleur au moteur Nature: tensions triphasées de forme sinusoïdale ou trapézoïdale (suivant le moteur). Le courant est fonction du couple moteur d'assistance
 - EEFCON: Energie Electrique de Freinage fournie par le moteur au CONtrôleur Nature: tensions triphasées de forme sinusoïdale ou trapézoïdale (suivant le moteur). La f.c.é.m. est proportionnelle à la vitesse et le courant est fonction du couple de freinage réglé par le cycliste.
 - EMPMOT : Energie Mécanique de Propulsion fournie par le MOTeur Nature : couple d'assistance et vitesse contrôlés par le cycliste
 - EMFMOT : Energie Mécanique de Freinage exercée par le MOTeur Nature : couple de freinage contrôlé par le cycliste
 - POSROT: Information de position angulaire du rotor
- $Cycliste \rightarrow P\'{e}dales \rightarrow Contr\^{o}leur$
 - VPEDAL : Information indiquant la vitesse de pédalage ou le couple de pédalage suivant l'équipement du vélo

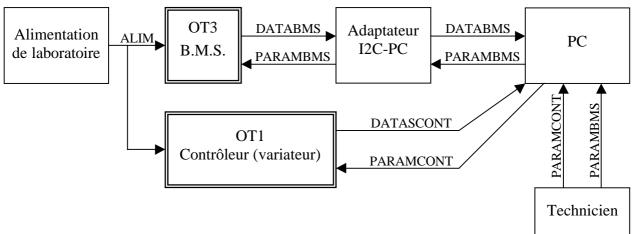
Nature : tension DC proportionnelle à la vitesse de pédalage ou au couple de pédalage

- Cycliste → Poignée de freinage → Contrôleur
 - VFREIN : Information indiquant le couple de freinage réglé par le cycliste
 Nature : tension DC proportionnelle à l'angle de rotation de la poignée
- *Clef codée* → *Contrôleur*
 - CLEF : Information codée indiquant la présence de la clef Nature : Trame numérique série
- $GPS \rightarrow Contrôleur$
 - DTA_GPS: Trames NMEA

Nature : Trame numérique au format série asynchrone 4800 bauds

- Contrôleur → "SD Card"
 - JJMMAA.DTA: fichier de structures binaires comportant les coordonnées GPS, les tensions et courant batterie ainsi que l'heure. Les structures sont ajoutées au fichier au rythme de une par seconde, quand le vélo roule et tout au long d'une journée.

La date est donnée par le nom du fichier (JJMMAA.DTA).

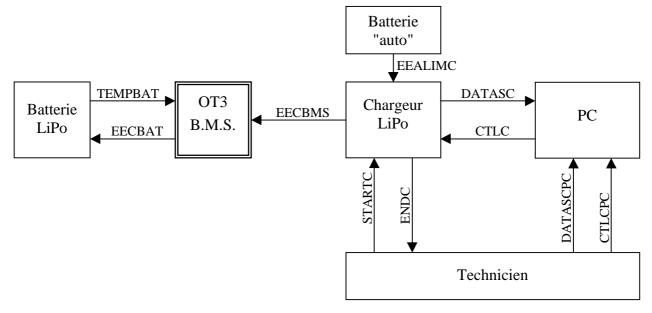

Ces données sont par la suite exploitées par un logiciel spécifique sur PC.

Nature : fichier de structures binaires sur SD Card

- Contrôleur ↔ Tableau de bord
 - DATASCONT : flux de données contenant les informations suivantes à afficher sur le tableau de bord :
 - durée entre 2 changements d'état des capteurs (pour calculer la vitesse),
 - nombre de changements d'états depuis la 1° mise en service (pour calculer la distance parcourue)
 - état de la batterie
 - profil d'assistance
 - présence de la clef codée

- PARAMCONT : paramètres de configuration du contrôleur réglés par le cycliste sur le tableau de bord :
 - profil d'assistance
 - activation de la clef codée
 - commande d'éclairage
- $Cycliste \leftrightarrow Tableau \ de \ bord$
 - PARAMTAB : paramètres de configuration du tableau de bord :
 - commande du rétro-éclairage
 - diamètre de la roue
 - capacité de la batterie
 - r.a.z. compteur partiel
 - heure
 - PARAMCONT : paramètres de configuration du contrôleur réglés par le cycliste sur le tableau de bord :
 - profil d'assistance
 - activation de la clef codée
 - commande d'éclairage
 - INFOSCY: informations visuelles pour le cycliste:
 - vitesse instantanée,
 - vitesse moyenne sur le parcours,
 - distance totale (pas de r.a.z. possible),
 - distance partielle,
 - énergie disponible,
 - heure,
 - durée du parcours
 - indicateurs de profils d'assistance et d'antivol

4.1.2 Paramétrage du contrôleur et du BMS au service technique de VELECTRIS :



Descriptions des échanges et liens :

- Alimentation de laboratoire \rightarrow B.M.S. et contrôleur
 - ALIM : énergie électrique d'alimentation du BMS et du contrôleur
 Nature : tension DC de 36V nominal. Le courant est fonction du besoin
- $B.M.S. \leftrightarrow Adaptateur\ I2C-PC\ et\ PC$
 - PARAMBMS : paramètres de configuration
 - nombre d'éléments par BMS (10 maximum)
 - nombre et n° du BMS en cas de couplage
 - seuils de charge et de sécurité des éléments

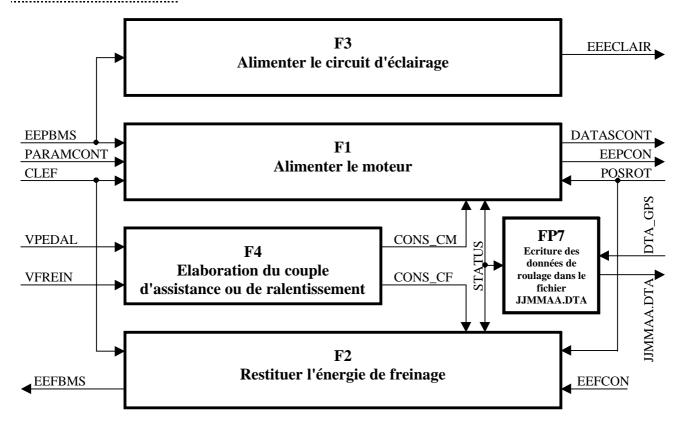
- DATABMS : caractéristiques de charge sur 24 heures max
 - tension
 - courant de charge total,
 - courant dérivé dans les éléments,
 - température.
- $Contrôleur \leftrightarrow PC$
 - PARAMCONT : paramètres de configuration
 - Adaptation à la législation de chaque pays : Pmax de 250W à 750W, assistance ou propulsion à 100%
 - Adaptation au moteur : nombre de pôles, caractéristiques de fcém (sinus ou trapèze) et de couple, avec ou sans capteurs de position à effet Hall, avance de phase
 - Adaptation à l'équipement connecté : poignée d'accélération et/ou de freinage par récupération, leviers de frein, capteur de couple, tableau de bord, clef codée
 - Table de codage des capteurs à effet Hall
 - Décalage de phase entre le champ rotorique et les capteurs
 - DATASCONT : Caractéristiques électriques en fonctionnement :
 - Vitesse et courants moteur,
 - Tension et courant batterie
- PC ← Technicien : les paramètres et données déjà cités sont échangés avec le technicien via une interface conviviale.

4.1.3 Charge et contrôle de la batterie au service technique de VELECTRIS :

Descriptions des échanges et liens :

- $Batterie\ LiPo \leftrightarrow B.M.S.$
 - EECBAT : Energie Electrique fournie à la BATterie
 - TEMPBAT : Informations : température du pack
- $B.M.S. \leftarrow Chargeur\ LiPo$
 - EECBMS : Energie Electrique fournie au BMS. La tension et le courant sont contrôlés par le chargeur.
- $Batterie\ auto \rightarrow Chargeur\ LiPo$
 - EEALIMC : Energie Electrique d'ALIMentation du Chargeur.
 Nature : tension de 12V à 15V. Le courant est fonction du besoin.
- $Technicien \leftrightarrow Chargeur \ LiPo$
 - STARTC : l'action sur un BP démarre un cycle de charge
 - ENDC: indication lumineuse de fin de charge

• Chargeur LiPo \leftrightarrow PC

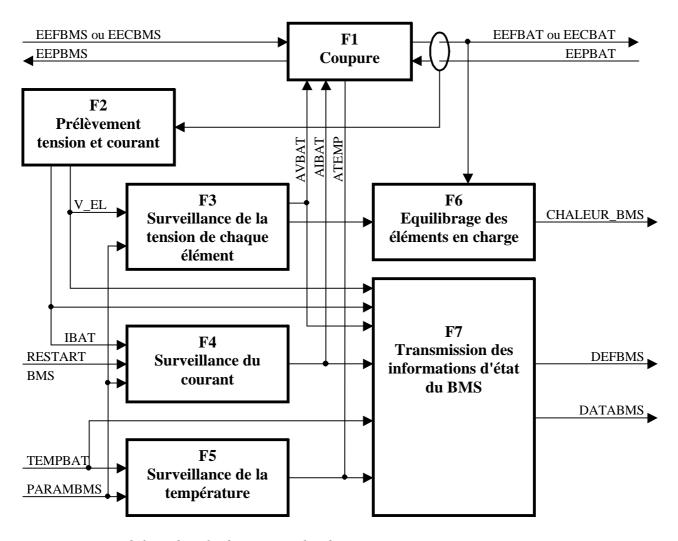

- CTLC : informations de contrôle de charge : type de batterie, nombre d'éléments, capacité, courant max, paramètres de l'algorithme de charge
- DATASC : caractéristiques électriques de charge : tension, courant, température et résistance interne sur 24 heures

■ $Technicien \leftrightarrow PC$

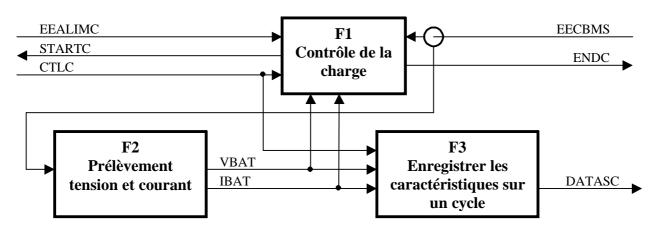
- CTLCPC : informations de contrôle de charge : type de batterie, nombre d'éléments, capacité, courant max, paramètres de l'algorithme de charge
- DATASCPC : caractéristiques électriques de charge : tension, courant, température et résistance interne sur 24 heures

4.2 Schémas fonctionnels de niveau II

4.2.1 OT1: Contrôleur


Les signaux sont définis dans la description des diagrammes sagittaux.

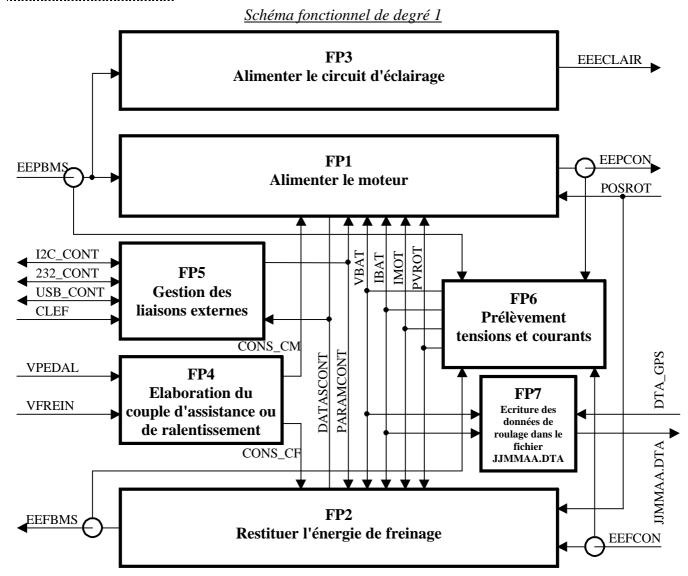
4.2.2 OT2: Tableau de bord


Les signaux sont définis dans la description des diagrammes sagittaux.

4.2.3 OT3: B.M.S.

Les signaux sont définis dans la description des diagrammes sagittaux.

4.2.4 OT4 : Chargeur "LiPo"



Les signaux sont définis dans la description des diagrammes sagittaux.

5. Moyens préliminaires disponibles et contraintes de réalisation

5.1 Spécifications

5.1.1 OT1: Contrôleur

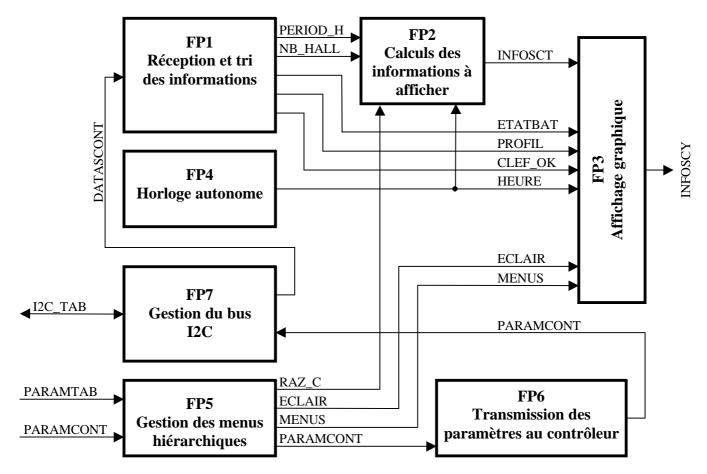
Le contrôleur est bâti autour d'un microcontroleur spécialisé dans la commande de moteur (famille dsPIC de Microchip) ce qui permet de minimiser les structures matérielles et donc le coût.

Caractéristiques des E/S du contrôleur

Nom	Description	Nature	Caractéristiques
EEPBMS	Energie électrique fournie	Tension DC	$V_{BMS} = 32 \text{ à } 84\text{V}$
	par le BMS	Le courant est fonction	$I_{BMSmax} = 20A$
		de la demande	
EEPCON	Energie électrique fournie	Tensions triphasées	Amplitude entre phases : 0V à
	par le contrôleur au	sinusoïdales produites	V _{BMS} environ
	moteur	par PWM.	Courant eff max: 10A
		Le courant est asservi à	Fréquence : 0Hz à 120Hz
		CONS_CM	
EEECLAIR	Energie électrique pour	Tension DC régulée	Tension DC sélectionnable entre
	l'éclairage du vélo	Le courant est fonction	6V et 12V. Ondulations < 1V
		de la demande	Pmax = 10W
EEFCON	Energie électrique fournie	Tensions triphasées	Amplitude entre phases : 0V à
	par le moteur en phase de	sinusoïdales	50V (50km/h max)
	freinage	Le courant est fonction	Courant eff max: 10A
EEEDMG		de la demande	Fréquence : 0Hz à 120Hz
EEFBMS	Energie électrique fournie	Le courant est contrôlé	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	au BMS en phase de	par VFREIN sans	$I_{BMSmax} = 20A$
	freinage	dépasser les limites de la batterie.	
VBAT	Tension DC	Signal numérique	Codage: BN sur 16 bits
VDAI	d'alimentation	Signal numerique	Résolution mini : 10 bits
IBAT	Courant demandé ou	Signal numérique	Codage: C2 sur 16 bits
IDAI	restitué à la source	Signal numerique	Résolution mini : 10 bits
IMOT	Courant instantané dans	Signal numérique	Structure IMOT:
INIOI	chaque phase du moteur	Signal numerique	- PHASE_A : int
	chaque phase du moteur		- PHASE_B : int
			- PHASE_C : int
			Codage C2
			Résolution mini : 10 bits
			Fréq. d'éch. = Fréq PWM
PVROT	Information : position	Trois signaux binaires	Etats déduits des 3 fcém entre
	angulaire du rotor déduite		les phases et à vide
	de la fcém à vide		
POSROT	Information : position	Trois signaux binaires	Alimentation capteurs : 5V
	angulaire du rotor	produits par 3 capteurs	Sorties type "collecteur ouvert"
		actifs à effet Hall	Résolution : 60° magnétiques
PARAMCONT	Informations TdB:	Bus I2C	Conformes au bus I2C
(exploitation)	 profil d'assistance, 		Pas d'isolation galvanique
	 cmde d'éclairage, 		Adresses libres
	activation clef		
DATASCONT	Informations à afficher	Bus I2C	Conformes au bus I2C
(exploitation)	sur le TdB		Pas d'isolation galvanique
PARAMCONT	Informations de config. du	Bus USB1	Conformes aux spécifications du
(service)	contrôleur		comité "USB-IF"
	Cmds de pilotage (via PC)		
DATASCONT	Informations : caract.	Bus USB1	Conformes aux spécifications du
(service)	élec. en fonctionnement		comité "USB-IF"
CLEF	Information : code de la	Technologie "iButton" à	Conformes aux spécifications
	clef	bus 1 fil.	"iButton" de Dallas-Maxim

Nom	Description	Nature	Caractéristiques
VPEDAL	Information : effort sur les pédales	Tension DC produite par un capteur actif	Alimentation : 5V Signal : tension prop. à l'effort Tensions min et max : dépendent de l'équipement
VFREIN	Information : action sur les freins	Tension DC produite par un capteur actif	Alimentation : 5V Signal : tension prop. à l'action Tensions min et max : dépendent de l'équipement
CONS_CM	Consigne de couple moteur	Signal numérique	Codage C2 sur 16 bits
CONS_CF	Consigne de couple de freinage	Signal numérique	Codage C2 sur 16 bits
DTA_GPS	Information : données GPS	Trames NMEA	Format série asynchrone 4800 bauds
JJMMAA.DTA	Information : données de roulage quotidiennes écrites chaque seconde	Fichier binaire sur support SD Card	Suite de structures de données binaires DTA_SD (16 octets): - HEURE : 2 octets - LONGITUDE : 4 octets - LATITUDE : 2 octets - ALTITUDE : 2 octets - VITESSE : 1 octet - VBAT : 2 octets - IBAT : 1 octet

Analyse succincte des fonctions du contrôleur


Fonctions	Description	Réalisation
FP1: alimenter le moteur FP2: restituer l'énergie de freinage	Ces 2 fonctions sont regroupées car le convertisseur utilisé est naturellement réversible. La commande est adaptée au type de moteur	Structure mixte: matérielle: - 3 générateurs PWM intégrés dans le μC - driver et bras PWM - capteur de tension batterie - capteurs de courant moteur et bat. logicielle: - Space Vector Modulation (SVM) - Synchronisation du vecteur statorique - Régulation de boucle (PID)
FP3: alimenter le circuit d'éclairage	Cette fonction convertit la tension batterie en une tension compatible avec l'éclairage du vélo. Elle produit aussi les tensions d'alimentation nécessaires à l'électronique du contrôleur	Structure matérielle. Convertisseur DC-DC à découpage pour optimiser le rendement
FP4: élaboration du couple d'assist. et de ralentissem.	Elle produit les consignes de couple moteur et frein en fonction des actions du cycliste sur les pédales et les poignées de frein.	Structure mixte : - matérielle : CAN - logicielle : mise à l'échelle

FP5 : gestion	Cette fonction assure les liens et les échanges	Structure mixte :
des liaisons	d'informations avec :	 matérielle : adaptations aux bus
externes	– le tableau de bord (I2C*)	 logicielle : gestion des protocoles
	 la clef codée (iButton*) 	
	- le PC (USB1* ou RS232*)	
FP6:	Cette fonction mesure la tension et le courant	Mesure des tensions : CAN 10 bits
prélèvement	dans la batterie (dans les 2 sens) ainsi que les	intégré au μC
tensions et	courants dans chaque phase du moteur et les	Mesure du courant : CAN 10 bits
courants	convertis en numérique.	mini intégré au μC
	Les signaux PVROT sont utilisés pour "caler"	Trois comparateurs produisent les
	les capteurs à effet Hall	signaux PVROT à partir des fcém à
		vide du moteur
FP7 : écriture	Cette fonction exploite les données GPS et les	Structure mixte:
des données	tension et courant dans la batterie pour les écrire	 matérielle : coupleur SPI du
de roulage	sur un support "SD Card". Le format FAT16 ou	microcontroleur
dans le fichier	FAT32 doit être respecté.	logicielle : gestion "SD Card" et
JJMMAA.DTA		FAT

et : se reporter aux documents ressources associés

5.1.2 OT2: Tableau de bord (TdB)

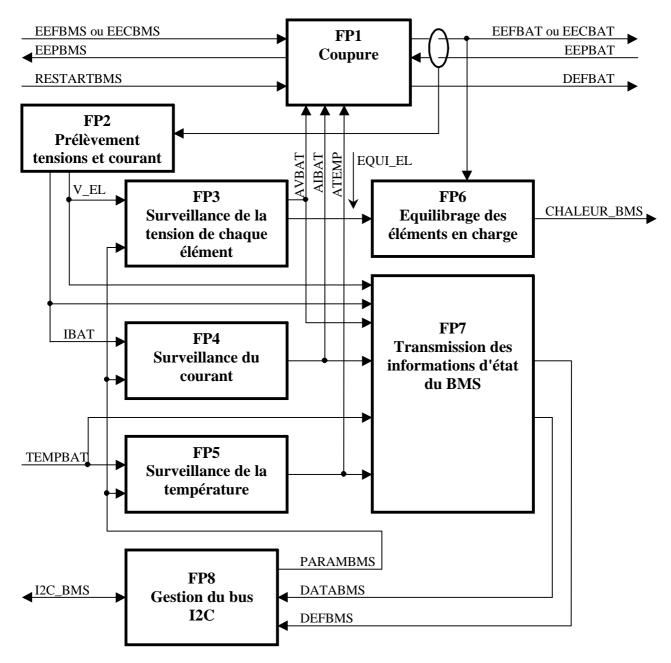
Schéma fonctionnel de degré 1

Les technologies sont choisies pour respecter la fonction de service d'autonomie. Le tableau de bord est bâti autour d'un microcontroleur à faible consommation.

Caractéristiques des E/S du TdB

Nom	Description	Nature	Caractéristiques
PARAMTAB	Paramètres du tableau de bord réglés par le cycliste.	Le cycliste introduit les valeurs via un clavier et un menu hiérarchique affiché sur l'écran.	Touches "Menu", "Next", "OK", "+" et "-" Structure PARAMTAB: - DIAM_ROUE: BN sur 16 bits - CAP_BAT: BN sur 16 bits
I2C_TAB	Informations échangées avec le contrôleur (PARAMCONT et DATASCONT)	Bus I2C	Conformes au bus I2C Pas d'isolation galvanique
PARAMCONT	Paramètres du contrôleur réglés par le service technique.	Le technicien introduit les valeurs via un clavier et un menu hiérarchique affiché sur l'écran.	Touches "Menu", "Next", "OK", "+" et "-" Structure PARAMCONT: - PAYS: char - PROFIL: char - NB_POLE: char - SINUS: char - EQUIP: char

DATAGGONT	T., C., 1	1	China atau a DATTA CONTE
DATASCONT	Informations du	Information numérique	Structure DATASCONT:
	contrôleur	sous la forme d'une	- NB_HALL : long
		structure à 5 membres.	- PERIOD_H : long
			- ETATBAT : char
			- PROFIL : char
			- CLEF_OK : char
PERIOD_H	Durée entre 2 chgts d'état	Information numérique	Code BN sur 32 bits
	des capteurs Hall		Résolution : 16µS
NB_HALL	Nombre de changements	Information numérique	Code BN sur 32 bits
	d'états des capteurs depuis		
	la 1° mise en service		
ETATBAT	Etat de la batterie :	Information numérique	Membres de la structure
	tension	sous la forme d'une	ETATBAT:
	 quantité d'électricité 	structure à 2 membres	- VBAT : BN sur 16 bits
	consommée		Résolution : 80mV
			- QBAT : BN sur 16 bits
			Résolution : 20mAh
PROFIL	Profil actuel d'assistance :	Information numérique	Codée sur 8 bits :
	– normal		- normal : 0
	– boost		– boost : 0xFF
CLEF_OK	Indication de la présence	Information numérique	faux : clef absente
	de la clef codée	booléenne	vrai : clef présente
HEURE	Heure actuelle	Information numérique	Membres de la structure
		sous la forme d'une	HEURE:
		structure à 3 membres	– H: heure (0 à 23)
			– M: minutes (0 à 59)
			- S: secondes (0 à 59)
RAZ_C	Raz du compteur partiel	Ordre	Raz immédiate à la réception de
			l'ordre
INFOSCT	Vitesse instantanée,	Informations	Membres de la structure
	vitesse moyenne, distance	numériques regroupées	INFOSCT:
	totale parcourue et	dans une structure	– VI : 0 à 99.9km/h
	distance partielle		- VM: 0 à 99.9km/h
			– DT : 0 à 9999km
			– DP: 0 à 99,99km
MENUS	Menus hiérarchiques	Graphiques sur le LCD	Ecran graphique de 64x128
	graphiques pour composer		pixels (modèle S64128G de
	les paramètres du tableau		DISPLAYTECH)
	de bord et du contrôleur		
INFOSCY	Informations destinées au	Graphiques, textes et	Ecran graphique de 64x128
	cycliste	nombres sur le LCD	pixels (modèle S64128G de
			DISPLAYTECH)


Analyse succincte des fonctions du TdB

Fonctions	Description	Réalisation
FP7 : gestion du bus I2C	Cette fonction assure les liens et les échanges d'informations avec le contrôleur (I2C*)	Structure mixte : - matérielle : adaptations au bus - logicielle : gestion du protocole
FP1: réception et tri des informations	Cette fonction identifie les informations pertinentes dans le flux I2C, les mémorise et les transmet aux fonctions concernées	Structure logicielle
FP2 : calculs des informations à afficher	Les informations PERIOD_H, NB_HALL et HEURE sont utilisées pour calculer la vitesse instantanée, la vitesse moyenne, la distance totale parcourue et la distance partielle. L'ordre RAZ_C initialise la vitesse moyenne et la distance partielle.	Structure logicielle
FP3: affichage graphique	Les informations sont affichées sous les formes graphiques, alphanumériques et icônes pour assurer la meilleure lisibilité possible.	Technologie LCD noir et blanc pour minimiser la consommation.
FP4 : horloge autonome	Cette fonction produit l'information HEURE	Structure mixte: - matérielle: timer du μC - logicielle: comptage de temps en heures, minutes et secondes Autonomie supérieure à 2 ans
FP5 : gestion des menus hiérarchiques	La fonction affiche des menus sur le LCD pour permettre au cycliste de régler les paramètres avec les 5 touches du clavier	Structure mixte : - matérielle : clavier matricé de 5 touches - logicielle : identifications des ordres, menus et paramètres
FP6: transmissions des paramètres au contrôleur	Constructions des trames de données à destination du contrôleur (structure PARAMCONT)	Structure logicielle

^{* :} se reporter aux documents ressources associés

5.1.3 OT3: B.M.S.

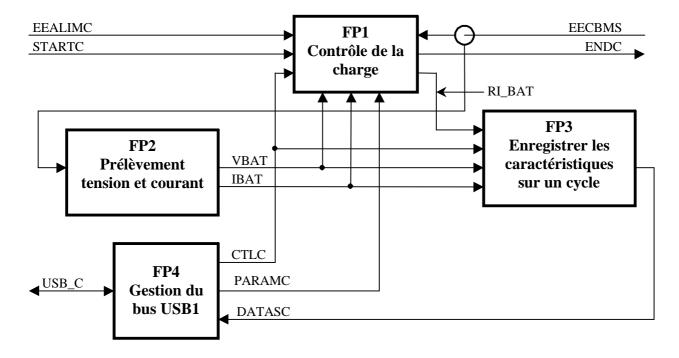
Schéma fonctionnel de degré 1

Les structures électroniques sont alimentées par la batterie surveillée. En conséquence, les technologies sont choisies pour minimiser la consommation de façon à conserver la capacité de la batterie le plus longtemps possible en phase de repos ou de stockage.

Caractéristiques des E/S du BMS

Nom	Description	Nature	Caractéristiques
EEPBAT	Energie électrique fournie	Tension DC	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	par la batterie LiPo ou	Le courant est fonction	$I_{BMSmax} = 20A$
	LiIon	de la demande	
EEPBMS	Energie électrique fournie	Tension DC	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	par le BMS	Le courant est fonction	$I_{BMSmax} = 20A$
		de la demande	
EEFBMS	Energie électrique fournie	Tensions DC	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	par le moteur via le	Le courant est fonction	$I_{BMSmax} = 20A$
	contrôleur en phase de	du freinage	
	freinage		
EEFBAT	Energie électrique fournie	Tensions DC	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	par le moteur via le	Le courant est fonction	$I_{BMSmax} = 20A$
	contrôleur et le BMS en	du freinage	
EE CD1 (C	phase de freinage	m	71 00 \ 1011 (0 CT)
EECBMS	Energie électrique fournie	Tensions et courants	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	par le chargeur	sont contrôlés pour le	$I_{BMSmax} = 3A$
		respect de l'algorithme	
EECDAT	Engais districus formis	de charge de la batterie Tensions et courants	V 22 à 42V (26V nom)
EECBAT	Energie électrique fournie		$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	à la batterie par le	sont contrôlés pour le	$I_{BMSmax} = 3A$
	chargeur via le BMS	respect de l'algorithme de charge de la batterie	
DEFBAT	Indication d'un défaut de	Indicateur lumineux	Couleur rouge; clignotant
DEFDAT	batterie ayant causé la	indicateur funnieux	Coulcul Touge, eligilotain
	coupure de l'énergie		
RESTARTBMS	Ordre de fermeture du	Bouton poussoir	Encastré pour éviter pour éviter
	fusible électronique	2 outon pousson	toute action accidentelle
TEMPBAT	Température du pack	Bus I2C	Conformes au bus I2C
			Pas d'isolation galvanique
V_EL	Tension DC de chaque	Ensemble de signaux	Codage: BN sur 16 bits
	élément du pack (jusqu'à	numériques (max 10)	Résolution : 16 bits
	10): 0V (!) à 4,5V	_	
IBAT	Courant DC dans la	Signal numérique	Codage: C2 sur 16 bits
	batterie (0A à 30A)		Résolution mini : 8 bits
EQUI_EL	Commande d'équilibrage	Ensemble de signaux	Tension d'équilibrage :
	du courant de charge dans	PWM (max 10)	4,2V±0,5%
	chaque élément		Courant dérivé : 0 à 0,3A
			Résolution : 10mA
CHALEUR_BMS	Chaleur produite par la	Chaleur	Dissipée par un radiateur
	dérivation des courants de		
	charge		
AVBAT	Anomalie sur la tension	Signal binaire	Seuil ajustable de 2,7V à 3,2V
	d'un ou plusieurs éléments		
AIBAT	Surintensité en charge ou	Signal binaire	Seuil ajustable de 1A à 30A
	en décharge		
ATEMP	Surchauffe du pack	Signal binaire	Seuil ajustable de 50°C à 70°C

Nom	Description	Nature	Caractéristiques
PARAMBMS	Paramètres du BMS	Information numérique	Structure PARAMBMS:
			- NB_BMS : 0 à 7
			- NB_EL: 1 à 10
			- EQUI_V: 4,2V±0,5%
			- SEUIL_V : 2,7V à 3,2V
			- SEUIL_I : 1A à 30A
			- SEUIL_T : 50°C à 70°C
DATABMS	Informations du BMS	Information numérique	Structure DATASCONT:
			- V_EL : 10 x int
			- I_BAT : int
			- TEMPBAT : int
			- EQUI_EL : 10x int
DEFBMS	Informations du BMS	Information numérique	Structure DEFBMS:
			- AVBAT : char
			- AIBAT : char
			- ATEMP : char
I2C_BMS	Informations échangées	Bus I2C	Conformes au bus I2C
	avec d'autres BMS ou le		Isolation galvanique
	PC optionnel		


Analyse succincte des fonctions du BMS

Fonctions	Description	Réalisation
FP1 : coupure	Fonction de "fusible électronique" réarmable.	Matérielle : MOSFET
	Une anomalie coupe l'alimentation en énergie	Courant max : 20A
	entre la batterie et le contrôleur ou le chargeur	Résistance de "contact" : < 5mΩ
	quel que soit son sens	Tenue en tension : 80V
FP2:	Cette fonction mesure les tensions de chaque	Mesure des tensions par multiplexage,
prélèvement	élément du pack et le courant dans la batterie (en	CAN 16 bits intégré au μC.
tensions et	charge et en décharge) et les convertis en	Mesure du courant : shunt + CAN 10
courant	numérique	bits mini intégré au μC
FP3:	AVBAT est produit par comparaisons avec le	Mixte:
surveillance	seuil SEUIL_V	 matérielle : timer du μC pour
de la tension	EQUI_EL est produit par comparaisons avec le	produire le PWM
de chaque	seuil EQUI_V : s'il est dépassé, EQUI_EL pilote	 logicielle : comparaisons et
élément	FP6 pour dériver une partie du courant de charge	régulations
	dans l'élément concerné et maintenir sa tension à	
	EQUI_V.	
FP4:	Comparaison avec le seuil SEUIL_I	Logicielle
surveillance		
du courant		
FP5:	Comparaison avec le seuil SEUIL_T	Logicielle
surveillance		
de la		
température		
FP6:	La fonction permet, pour chacun des éléments de	Matérielle : des transistors MOS
équilibrage	batterie, de dériver une partie du courant total de	associés à chaque élément, dérivent
des éléments	charge et ainsi limiter toute surcharge.	une partie du courant par PWM.
en charge	La fonction peut contrôler jusqu'à 10 éléments	L'énergie est dissipée en chaleur.

FP7: transmission des informations d'état	Constructions des trames de données à destination des autres BMS du pack (structures PARAMBTS, DATABMS et DEFBMS)	Logicielle
FP8 : gestion du bus I2C*	Cette fonction assure les liens et les échanges d'informations avec les autres BMS ou un PC	Structure mixte : — matérielle : adaptations au bus
	dans le service technique	 logicielle : gestion du protocole

^{* :} se reporter aux documents ressources associés

5.1.4 OT4: Chargeur "LiPo"

Le chargeur est destiné à un usage dans le service technique. Les considérations liées au prix de revient ne sont pas à prendre en compte.

Caractéristiques des E/S du chargeur

Nom	Description	Nature	Caractéristiques
EEALIMC	Energie électrique fournie	Tension DC	Tension: 12V à 15V
	par une batterie de type	Le courant est fonction	Courant max : 15A
	"automobile"	de la demande	
EECBMS	Energie électrique fournie	Tensions et courants	$V_{BMS} = 32 \text{ à } 42 \text{V } (36 \text{V nom.})$
	par le chargeur	sont contrôlés pour le	$I_{BMSmax} = 3A$
		respect de l'algorithme	
		de charge de la batterie	
STARTC	Ordre de démarrer un	Bouton poussoir	Encastré pour éviter toute action
	cycle de charge		accidentelle
ENDC	Indication de la fin d'un	Indicateur lumineux	Couleur rouge;
	cycle de charge		Clignotant en charge
			Permanent en fin de charge
VBAT	Tension DC totale du	Signal numérique	Codage: BN sur 16 bits
	pack en charge		Résolution : 16 bits

Nom	Description	Nature	Caractéristiques
IBAT	Courant DC dans la batterie (0A à 3A)	Signal numérique	Codage : C2 sur 16 bits Résolution mini : 8 bits
RI_BAT	Résistance interne de la batterie (0 à $200 \text{m}\Omega$)	Signal numérique	Codage : C2 sur 16 bits Résolution mini : 8 bits
PARAMC	Paramètres du chargeur	Information numérique	Structure PARAMC: - TYPBAT: Ni-Mh, Li-Ion ou Li-Po - V_CH: 4,00V à 4,20V - NB_EL: 1 à 10 - IBATmax: 0 à 3A - SEUIL_T: 50°C à 70°C
CTLC	Commandes du chargeur	Information numérique	Structure CTLC : - START/STOP - DOWNLOAD
DATASC	Caractéristiques de charge enregistrées à chaque seconde pendant le cycle (durée max : 24h)	Information numérique : tableau de 86400 structures au maximum	Structure DATASC: - VBAT: unsigned int - IBAT: unsigned int - RI_BAT: unsigned int
USB_C	Informations échangées avec le PC optionnel (PARAMC, CTLC et DATASC)	Bus USB1*	Conformes aux spécifications du comité "USB-IF"

Analyse succincte des fonctions du chargeur

Fonctions	Description	Réalisation
F1 : contrôle	Cette fonction utilise EEALIMC et exploite	Mixte:
de la charge	PARAMC, VBAT et IBAT pour charger la	matérielle :
	batterie en respect de l'algorithme de charge.	 conversion DC-DC contrôlée
	Le cycle de charge est contrôlé par STARTC	logicielle :
	et/ou CTLC. ENDC indique la fin du cycle.	 régulation de la tension
	Elle lance chaque seconde un cycle de mesure de	 régulation du courant
	RI_BAT	 algorithme de charge
F2:	Cette fonction mesure la tension du pack et le	VBAT : CAN 16 bits intégré au μC
prélèvement	courant et les convertis en numérique	IBAT : CAN 10 bits mini intégré au
tension et		μC
courant		
F3:	Cette fonction accumule chaque seconde les	Mixte:
enregistrer les	mesures VBAT, IBAT et RI_BAT (structure	 matérielle : mémoire EEPROM ou
caract. sur un	DATASC) au cours d'un cycle de charge.	flash externe de 512K
cycle		 logicielle : transfert dans
		l'EEPROM
F4: gestion	Cette fonction assure les liens et les échanges	Structure mixte :
du bus USB*	d'informations avec un PC dans le service	 matérielle : adaptations au bus
	technique	 logicielle : gestion du protocole

^{* :} se reporter aux documents ressources associés

5.2 Contraintes liées à l'architecture matérielle ou logicielle

5.2.1 Principaux logiciels mis en œuvre

- CAO Protel DXP
- Environnement de développement MPLAB pour dsPIC (programmation en C)
- Environnement de développement IAR pour MSP430 (programmation en C)

5.2.2 Principales structures/composants à valider

- *OT1* : contrôleur
 - Commande de moteur brushless 750W à transistors MOS
 - Fusible électronique à transistors MOS: 100V/20A
 - Capteurs de courants
 - Convertisseur USB1 ↔ UART
 - Bus USB, I2C et "One Wire"
 - Bus SPI pour la gestion d'une "SD Card"
 - Unité centrale à microcontroleur dsPIC
- OT2 : tableau de bord
 - Affichage LCD graphique à communication par bus SPI
 - Horloge autonome intégré dans le μC
 - Unité centrale à microcontroleur MSP430 à faible consommation
 - Bus I2C
 - Alimentation des structures électroniques et des leds de rétro-éclairage
 - Alimentation de sauvegarde de l'horloge.
- *OT3* : *BMS*
 - Fusible électronique à transistors MOS: 100V/20A
 - Alimentation DC à très faible consommation
 - Amplificateur différentiel d'instrumentation
 - Equilibreur de courant de charge pour 10 élément Li-Po
 - Source de tension de référence à haute stabilité
 - CAN 16 bits "sigma delta" pour la mesure des tensions
 - Capteur de courant
 - Capteur de température
 - *Bus I2C*
 - Unité centrale à microcontroleur MSP430 à faible consommation
- *OT4* : chargeur
 - Convertisseur DC-DC élévateur : 12V/15V → 3,2V à 42V 3A max piloté par une sortie PWM du MSP430
 - Capteur de courant
 - Mesure de résistance interne
 - Source de tension de référence à haute stabilité
 - CAN 16 bits pour la mesure des tensions
 - Mémoire EEPROM ou FLASH à bus série
 - Convertisseur USB1 ↔ UART
 - Bus USB1
 - Unité centrale à microcontroleur PIC24

Les étudiants sont également chargés de valider les fonctions logicielles d'initialisation (en C) des périphériques du microcontroleur mis en œuvre.

5.2.3 Principales fonctions logicielles à valider

Les sources de ces fonctions sont fournis. Les étudiants sont chargés de les tester, d'y apporter quelques modifications (adaptations à l'implantation et au microcontroleur utilisé) et de les valider.

• OT1 : contrôleur

- Commande "PWM" pour moteur brushless triphasé (dans FP2 et FP3)
- Gestion communications I2C (couche liaison)
- Gestion communications UART (couche liaison)
- Gestion communications "One Wire" (couche liaison)
- Gestion communication SPI pour les échanges avec la "SD Card" (couche liaison)
- Gestion du format FAT (FAT16 et FAT32) sur SD Card

• OT2 : tableau de bord

- Bibliothèque de fonctions d'exploitation du LCD graphique
- Gestion communications I2C (couche liaison)
- Calculs des informations à afficher (FP2) et affichage graphique (FP3)

■ *OT3 : BMS*

- Surveillance de la tension de chaque élément (FP3)
- Equilibrage des éléments en charge (partie logicielle de FP6)
- Surveillance du courant (FP4)
- Surveillance de la température (FP5)
- Gestion communications I2C (couche liaison)

■ OT4 : chargeur

- Régulation "tension" (dans F1)
- Régulation "courant" (dans F1)
- Enregistrer une structure DATASC dans la mémoire EEPROM ou FLASH (dans F3)
- Gestion communications UART (couche liaison)

5.2.4 Organisation matérielle

Les équipes d'étudiants sont constituées par O.T.

Chaque étudiant réalise et teste une maquette qui assure une partie des fonctions de l'OT.

Chaque maquette comporte son propre microcontroleur pour faciliter les phases de tests.

Les interconnexions entre les maquettes doivent permettre de constituer un OT fiable, "présentable" et exploitable en laboratoire.

5.2.5 Organisation logicielle

Les étudiants sont chargés de valider en priorité les fonctions logicielles d'initialisation (en C) des périphériques du microcontroleur mis en œuvre.

La répartition des tâches les charge aussi de la validation de certaines fonctions internes.

Au final, il n'est pas exigé que l'OT réalise toutes les fonctions de service de l'OT.

5.3 Contraintes spécifiques liées à l'environnement

L'entreprise partenaire souhaite faire industrialiser les objets techniques OT1, OT2 et OT3 par un sous traitant à partir des documents produits par les étudiants.

Le rapport d'étude, le dossier de fabrication, les sources commentés et le rapport de test devront donner toutes les informations nécessaires au bureau d'étude chargé de ces développements.

L'élément "dangereux" de ce projet est la batterie "Li-Po" :

- elle peut fournir des courants très élevés et provoquer des brûlures par contact ou projection
- elle peut exploser si les règles de charge ne sont pas respectées

En conséquence, la batterie ne sera utilisée qu'en cas de nécessité absolue et dans un coffret résistant au feu. Un fusible rapide est inséré dans le câble de liaison. Un extincteur est disponible à proximité.

5.4 Contrainte économique

A terme, l'objectif de l'entreprise partenaire est de proposer les objets techniques OT1, OT2 et OT3 à la vente. Leurs prix doivent rester comparables à la concurrence malgré les nouvelles fonctions de service. Chaque composant sera donc choisi pour son rapport qualité/prix en grande quantité et sa disponibilité à moyen terme.

Pour la réalisation des maquettes, le budget total est limité à 1000€, y compris la fabrication des cartes de câblage imprimé par un sous-traitant.

5.5 Documents et moyens technologiques mis à disposition

• Eléments du système disponible

L'entreprise partenaire a fourni gracieusement les équipements suivants :

- 1 contrôleur actuellement commercialisé
- 1 prototype du nouveau contrôleur "Ki"
- 1 prototype du nouveau tableau de bord "Véo"
- 1 chargeur "LiPo" 36V/2A
- 1 batterie "LiPo" 36V/8Ah
- 2 moteurs brushless "Phantom" de nouvelle génération (1 prototype + 1 modèle de série)
- 1 lot d'accessoires : poignée d'accélération, capteur "pédale", freins "électrique"

• Banc de test

L'équipe des professeurs d'électronique a construit 2 bancs de test permettant la mise en œuvre des moteurs brushless en traction et en freinage (pour les tests en restitution d'énergie)

• *CAO*

- Protel DXP

Réalisation PCB

- Au lycée pour les câblages de classe 3 ou inférieure
- Chez un sous-traitant pour les classe supérieures et si la métallisation des trous s'impose

• Documents spécifiques

Divers

Nom	Pg	Auteur	Description
l_12420020509fr00010044	44	Parlement	Directive 2002/24/CE et correctifs relatifs à la
l_21120030821fr00240048	25	européen	réception des véhicules à moteur à deux ou trois
l_10620050427fr00170031	15	.	roues
AN-1084	13	IRF	Power MOSFET Basic
Presentation_I2C.pdf	25	FRANCOMME	Description du bus I2C
DG232_20.pdf	16	FTDI	Mise en œuvre FT232BM (bus USB1)
Capteur courant.pdf	18	HATTAB	Technologie et choix d'un capteur de courant
Lipo Cells Lithium	52	KOKAM	Informations sur les batteries LiPo (technologie et
Polymer.pdf			mise en œuvre)

OT1 : contrôleur

Nom	Pg	Auteur	Description
Dossier de fabrication	2	?	Schéma structurel et implantation
du contrôleur actuel			
Dossier de fabrication	2	Cyril	Schéma structurel et implantation
du prototype "Ki"		HAENNEL	
Schéma proposé	2	Equipe	Schéma structurel validé partiellement (par
		pédagogique	simulation et/ou tests)
Caractéristiques	2	Equipe	Caractéristiques électriques et mécaniques du
moteur BLDC		pédagogique	moteur brushless "Phantom" de nouvelle génération
Velectris.pdf			
BrushlessBLDC +	33	FOURDAN	Fondamentaux sur les moteurs BLDC (brushless
AN885		Microchip	DC)
Principe_SVM_BLDC	8	CREMMEL	Principe de la "Space Vector Modulation"

Programme SVM sur	45	CREMMEL	Analyse du programme SVM implanté dans un
dsPICF2010 V2			dsPIC
AN898	18	Microchip	Choix des transistors MOS pour la commande de
			moteur
AN1048	9	Microchip	Evaluation des pertes dans les commandes de
			moteurs BLDC (brushless DC)
MOSFET Gate Drive	37	Laszlo	Note d'application sur les structures de commande
Circuits.pdf		BALOGH	de MOSFET
MOS dV-dt.pdf	7	Steve	Protection des MOSFET d'un bras PWM contre les
		MAPPUS	effets des dV/dt excessifs
tpap-6.pdf	10	IRF	Switching Voltage Transient Protection Schemes
			for High Current IGBT Modules
SD Card avec	34	CREMMEL	Gestion d'une "SD Card" via le coupleur SPI
dsPIC4011.pdf			Câblage et fonctions de la couche "liaison"
Gestion FAT avec	36	CREMMEL	Gestion d'une FAT sur une "SD Card"
dsPIC4011 V2.pdf			

– OT2 : tableau de bord

Nom	Pg	Auteur	Description
Schéma proposé	2	Equipe	Schéma structurel validé partiellement (par
		pédagogique	simulation et/ou tests)
Afficheurs LCD	7	???	Description de la technologie
LCD Nokia 3310	2	CREMMEL	Description et mise en œuvre du LCD Nokia 3310
Test Nokia 3310	11	CREMMEL	Bibliothèque de fonctions d'exploitation du LCD
MSP430.c			Nokia 3310 et programme de test

- *OT3* : *BMS*

Nom	Pg	Auteur	Description
Schéma proposé	2	Equipe	Schéma structurel validé partiellement (par
		pédagogique	simulation et/ou tests)
LiPo Balancer	4	ELV	Analyse et réalisation d'un module d'équilibrage
			pour 1 élément
slva155.pdf	17	Texas Instr.	Principe et mise en œuvre d'un circuit d'équilibrage
			de 4 éléments LiPo
AN53-6.pdf	16	Linear	Commande de MOSFET sur tension élevée (High
			Side MOSFET)

- OT4 : chargeur

orr. chargear			
Nom	Pg	Auteur	Description
Schéma proposé	2	Equipe	Schéma structurel validé partiellement (par
		pédagogique	simulation et/ou tests)
tcasii05_charger.pdf	5	MIN CHEN	Accurate, Compact, and Power Efficient Li-Ion
			Battery Charger Circuit
BatteryChargerReport	55	GLEYSER	Projet de chargeur universel de batterie
ALC 8000	16	ELV	Analyse et réalisation d'un chargeur universel
			30V/5A
MAX1647-	25	Maxim	Chargeur indépendant de la chimie des batteries
MAX1648.pdf			
AN947a.pdf	16	Microchip	Algorithme de charge des batteries LiPo

Instrumentation

Tous les instruments de mesure traditionnel d'un laboratoire auxquels s'ajoute un wattmètre triphasé et une caméra infrarouge prêtés par la section BTS électrotechnique.

5.6 Exigences qualité à respecter

5.6.1 Exigences qualité sur le produit à réaliser

Dans la mesure du possible, les composants choisis seront ceux utilisés pour la réalisation du produit final. La tâche d'intégration du sous traitant en sera facilitée.

La qualité de réalisation des maquettes doit permettre :

- une bonne reproductibilité (la société Velectris souhaite fournir des ensembles de maquettes à quelques unes de ses filiales pour procéder à des tests)
- un câblage fiable pour permettre des tests en situation (sur un vélo)

Les OT du projet sont destinés au "grand public". En conséquence, les composants seront sélectionnés pour leur robustesse et les fonctions dont les étudiants ont la charge seront testées dans les conditions extrêmes.

Les mesures de spécifications et de performances des OT constitués par l'association des maquettes seront réalisées par l'entreprise Velectris. Elle se charge aussi du respect des réglementations.

5.6.2 Exigences qualité sur le développement

Tous les choix effectués (technologie, composants, structures, ...) sont justifiés et commentés dans le rapport d'étude. Les simulations effectuées y figurent aussi. Les références des documents ressources sont indiqués.

Le dossier de fabrication des maquettes est utilisable par un sous-traitant pour fabriquer la carte de câblage imprimée, commander et câbler les composants.

Les procédures de tests sont établies à partir d'objectifs parfaitement déterminés. Les résultats, positifs ou négatifs, sont consignés et commentés.

5.6.3 Exigences qualité sur la documentation à produire

Pas d'exigence particulière de Velectris.

Bien entendu, les différentes productions, et en particulier le dossier technique final, seront évalués par l'équipe enseignante et la commission d'interrogation sur leurs qualités : précision, rigueur, clarté.

5.6.4 Exigences qualité sur la livraison

Les maquettes produites par les étudiants restent au lycée Couffignal.

Par contre, les dossiers de fabrication permettent à un sous traitant de reproduire ces maquettes (fabrication des cartes, commande et câblage des composants). Les rapports d'étude et de tests sont utilisés par le service technique de Velectris pour mener à bien les tests des fonctions de service en situation réelle.

En cas de satisfaction, ces mêmes documents seront utilisés par un bureau d'étude en sous-traitance pour la réalisation des prototypes.

Ces exigences nécessitent la fourniture des codes sources, parfaitement commentés pour permettre d'éventuelles modifications ou améliorations.

Note: M. Pascal NUTI, pdg de Velectris, fera partie des commissions d'interrogation de l'épreuve

5.6.5 Exigences qualité sur l'environnement d'exploitation

L'élément "dangereux" de ce projet est la batterie "Li-Po" :

- elle peut fournir des courants très élevés et provoquer des brûlures par contact ou projection
- elle peut exploser si les règles de charge ne sont pas respectées

En conséquence, la batterie ne sera utilisée qu'en cas de nécessité absolue et dans un coffret résistant au feu. Un fusible rapide est inséré dans le câble de liaison. Un extincteur est disponible à proximité.

L'équipe pédagogique et les étudiants s'engagent à ne divulguer les informations relatives à ce projet qu'après l'autorisation de la société Velectris.

6. Répartition des tâches par étudiant

La répartition des tâches n'est pas encore nominative. Il n'est donc pas encore possible de préciser le nom des étudiants.

Elle a été élaborée pour que chaque étudiant puisse être évalué sur les principaux "savoir-faire" des compétences C1, C2, C3 et T2 visées par l'épreuve E6.2

Compétence C1:

- Choisir les nouveaux composants et technologies
- Adapter le schéma structurel existant
- Valider les nouvelles structures partielles par simulation et/ou sur carte d'étude
- Rédiger le rapport d'étude

Compétence C2:

- Analyser les fonctions logicielles fournies
- "Mise au point" de ces fonctions par tests sur carte d'étude
- Produire les fonctions logicielles corrigées
- Rédiger le rapport d'étude

Compétence C3:

- Produire le dossier de fabrication
- Réaliser et câbler la maquette

Compétence T2 :

- Tester la réalisation des fonctions internes
- En équipe : tester certaines fonctions de service de l'OT
- Rédiger le rapport de test et la synthèse
- Adapter le schéma structurel existant

Equipe OT1 Contrôleur	Nom - Prénom	Fonctions et tâches principales à développer par rapport au produit
Etudiant 1		Fonction secondaire "Commande PWM" de FP1 et FP2 pour
		moteur BLDC triphasé de type "sinusoïdal"
		Objectifs:
		Réaliser une maquette à implanter dans un boîtier dissipateur
		BEX-803 de BOX ENCLOSURE (160x100x45mm) comportant :
		 le pont triphasé à transistors MOS précédés de ses "drivers"
		ainsi que les structures de protection
		- un connecteur pour la liaison avec la batterie
		un connecteur pour la liaison avec le moteur
		 une entrée "poignée" de commande en tension sur un
		connecteur spécifique
		 le fusible électronique (tâche de l'étudiant 2)
		 les prélèvements des tension et courants (tâche de l'étudiant 2)
		1
		 un connecteur DB25 pour la liaison avec le μC des maquettes des étudiants 3, 4 ou 5 et la fourniture du 12V
		Valider expérimentalement les choix des composants, des
		structures de protection et la configuration du dsPIC
Etudiant 2		Fonction FP6 "Prélèvements tensions et courants" (capteurs de
		courant à effet Hall).
		Fonction secondaire "Coupure de roue libre" de FP1 et FP2
		Objectifs:
		Réaliser une maquette à implanter dans un boîtier dissipateur
		BEX-803 de BOX ENCLOSURE (160x100x45mm) comportant :
		 le pont triphasé à transistors MOS précédés de ses "drivers"
		ainsi que les structures de protection (tâche de l'étudiant 1)
		 un connecteur pour la liaison avec la batterie
		 un connecteur pour la liaison avec le moteur
		 une entrée "poignée" de commande en tension sur un
		connecteur spécifique
		 le fusible électronique (fonction "Coupure de roue libre")
		 les prélèvements des tension et courants
		– un connecteur DB25 pour la liaison avec le μC des maquettes
		des étudiants 3, 4 ou 5 et la fourniture du 12V
		Valider expérimentalement les choix des composants, des
		structures et la configuration du dsPIC
Etudiant 3		Fonction FP5 : "Gestion du bus USB"
		Fonction secondaire "Décodage trames NMEA" de FP7
		Objectifs:
		Réalisation d'une maquette autonome comportant
		 son propre μC,
		- le circuit intégré de passerelle UART↔USB
		 un connecteur DIN6 pour la connexion du GPS série via un
		module d'adaptation de niveaux amovible,
		_
		 un connecteur DB25 pour la liaison avec les maquettes des étudiants 1 ou 2
		- un connecteur DB9 mâle pour le "bootloader" série.
		Tests et validations des fonctions des couches "physique",
		"liaison" et de la fonction "Décodage trames NMEA".

Etudiant 4	Fonctions secondaires "Gestion SD Card et FAT" de FP7 Objectifs: Réalisation d'une maquette autonome comportant - son propre μC, - un connecteur pour une "SD Card" standard - un connecteur DB25 pour la liaison avec les maquettes des étudiants 1 ou 2 - un connecteur DIN6 pour la connexion du GPS série - un connecteur DB9 mâle pour le "bootloader" série Tests et validations des fonctions des couches "physique" et "liaison" et des fonctions de la bibliothèque FAT utilisées.
Etudiant 5	Fonction secondaire "Identification de la clef codée" et "Gestion du bus I2C" (liaison au tableau de bord) de FP5 Objectifs: Réalisation d'une maquette autonome comportant - son propre μC, - un bornier de connexion du "iButton" - un connecteur de liaison I2C au tableau de bord - un connecteur DB25 pour la liaison avec les maquettes des étudiants 1 ou 2 - un connecteur DB9 mâle pour le "bootloader" série Tests et validations des fonctions des couches "physique" et "liaison" des 2 bus.

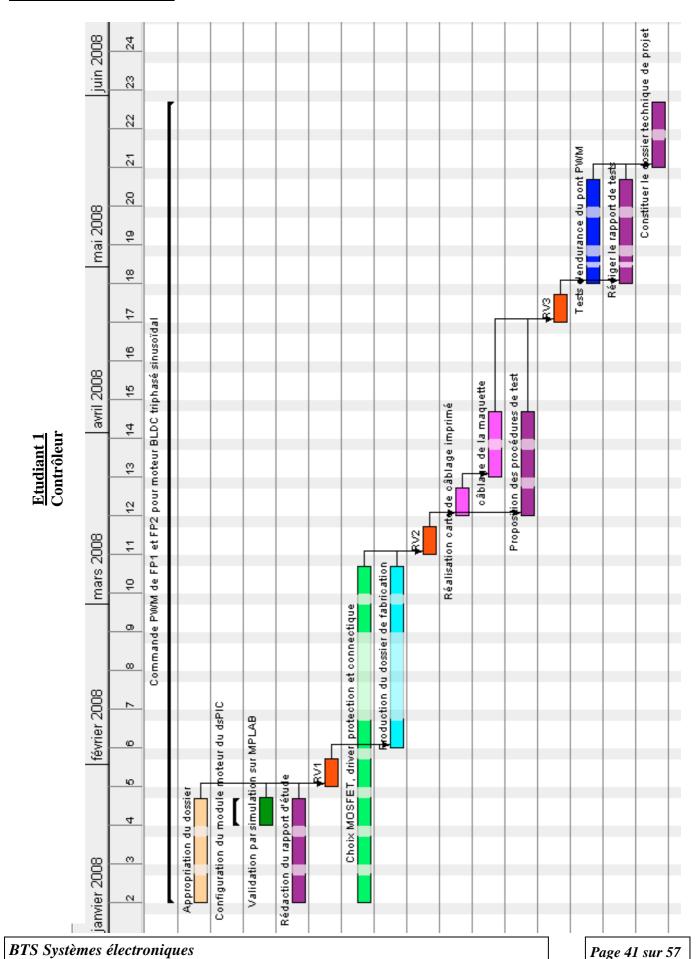
Equipe OT2 Tableau de bord	Nom - Prénom	Fonctions et tâches principales à développer par rapport au produit	
Etudiant 6		Fonctions auxiliaires d'alimentation Fonction FP4 : "Horloge autonome" Objectifs : Réalisation d'une maquette de l'OT complet s'intégrant dans le boîtier conçu à cet usage par Velectris. Elle comporte : - l'alimentation des structures électroniques et des leds de rétroéclairage - l'alimentation de sauvegarde de l'horloge - le microcontroleur et le connecteur JTAG d'émulation - le LCD et les boutons poussoirs adaptés au boîtier - le connecteur de liaison au contrôleur (I2C et alim)	
Etudiant 7		Test, validation et caractérisation des fonctions Fonction FP3 : "Affichage graphique" Objectifs : Réalisation d'une maquette de l'OT complet s'intégrant dans le boîtier conçu à cet usage par Velectris. Elle comporte : - l'alimentation des structures électroniques et des leds de rétroéclairage - l'alimentation de sauvegarde de l'horloge - le microcontroleur et le connecteur JTAG d'émulation - le LCD et les boutons poussoirs adaptés au boîtier - le connecteur de liaison au contrôleur (I2C et alim) Test, validation et caractérisation des fonctions	

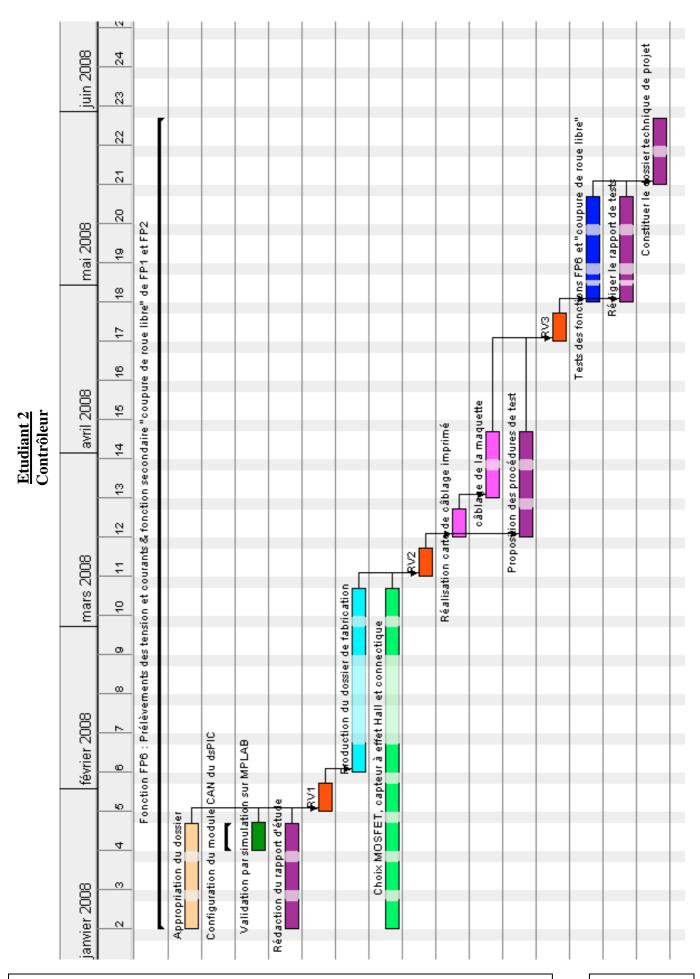
Etudiant 8	Fonction FP7: "Gestion du bus I2C" Objectifs: Réalisation d'une maquette de l'OT complet s'intégrant dans le boîtier conçu à cet usage par Velectris. Elle comporte: - l'alimentation des structures électroniques et des leds de rétroéclairage - l'alimentation de sauvegarde de l'horloge - le microcontroleur et le connecteur JTAG d'émulation - le LCD et les boutons poussoirs adaptés au boîtier - le connecteur de liaison au contrôleur (I2C et alim) Tests et validations des fonctions des couches "physique" et "liaison".
------------	---

Equipe OT3	Nom - Prénom				
BMS		produit			
Etudiant 9		Fonction FP1: "Coupure" (fusible électronique)			
		Fonction FP2: "Prélèvement du courant"			
		Fonction auxiliaire "Alimentation" des structures électroniques du			
		BMS			
		Objectifs:			
		Réalisation d'une maquette autonome comportant : - son propre uC et le connecteur ITAG d'émulation			
		– son propre μC et le connecteur JTAG d'émulation			
		 le fusible électronique (fonction "Coupure de roue libre") 			
		 les prélèvements du courant dans la batterie 			
		 les douilles 4mm de liaison à la maquette de l'étudiant 11 et 			
		au contrôleur.			
		Test, validation et caractérisation des fonctions			
Etudiant 10		Fonction FP2 : "Prélèvement des tensions"			
		Fonction FP3 : "Surveillance de la tension de chaque élément"			
		Fonction FP6 : "Equilibrage des éléments en charge"			
		Objectifs:			
		Réalisation d'une maquette autonome comportant			
		 son propre μC et le connecteur JTAG d'émulation 			
		 les structures de prélèvement de la tension de chacun des 10 			
		éléments de la batterie			
		- les structures d'équilibrage du courant de charge de chacun de			
		ces éléments			
		 les douilles 4mm de connexion à la batterie et à la maquette 			
		de l'étudiant 10			
		– le connecteur de liaison aux 10 éléments de la batterie			
		Test, validation et caractérisation des fonctions			
Etudiant 11		Fonction FP6 : "Surveillance de la température"			
		Fonction FP8: "Gestion du bus I2C" à isolation galvanique			
		Objectifs:			
		Réalisation d'une maquette autonome comportant			
		- son propre μC et le connecteur JTAG d'émulation			
		- le capteur de température I2C couplé à un élément à			
		échauffement réglable pour les tests			
		- la structure du transmetteur I2C bidirectionnel			
		- le connecteur de liaison I2C avec les autres BMS			
		Tests et validations des fonctions des couches "physique" et			
		"liaison".			

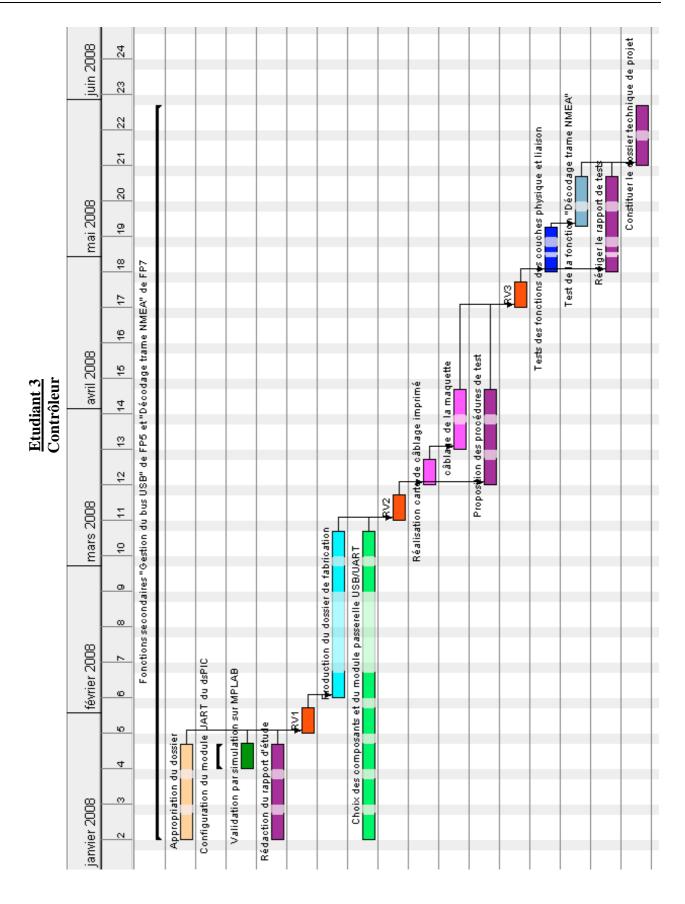
Equipe OT4	Nom - Prénom	Fonctions et tâches principales à développer par rapport au	
Chargeur	110111	produit	
Etudiant 12		Fonction secondaire "Conversion DC-DC" de FP1 "Contrôle de la	
		charge"	
		Objectifs:	
		Réalisation d'une maquette autonome comportant	
		 son propre μC de la série PIC24 	
		 les structures de générations des consignes de régulations "tension" et "courant" 	
		le convertisseur DC-DC de type "push-pull"	
		 les capteurs de tension et de courant pour les 2 boucles de régulation (tâche de l'étudiant 14) 	
		- le CAN "sigma delta" 16 bits (tâche de l'étudiant 14)	
		 les douilles 4mm de connexion à la batterie 	
		 un connecteur DB9 mâle pour le "bootloader" série 	
		Test, validation et caractérisation de la fonction	
Etudiant 13		Fonction secondaire "Mesure résistance interne" de FP1	
		"Contrôle de la charge"	
		Objectifs:	
		 son propre μC de la série PIC24 	
		 la structure de génération de la consigne de régulation du courant de mesure 	
		 la structure de la fonction "Mesure résistance interne" 	
		 les douilles 4mm de connexion à la batterie 	
		– un connecteur DB9 mâle pour le "bootloader" série	
		Réalisation d'une maquette autonome comportant son propre μC	
		Test, validation et caractérisation de la fonction	
Etudiant 14		Fonction FP2 : "Prélèvement tension et courant"	
		Fonction secondaire "Alimentation" des structures électroniques	
		Objectifs:	
		Réalisation d'une maquette autonome comportant	
		 son propre μC de la série PIC24 	
		 la structure de l'alimentation des fonctions électroniques 	
		- les capteurs de tension et de courant pour les 2 boucles de	
		régulation	
		- le CAN "sigma delta" 16 bits	
		 les structures de générations des consignes de régulations "tension" et "courant" (tâche de l'étudiant 12) 	
		 le convertisseur DC-DC de type "push-pull" (tâche de l'étudiant 12) 	
		- les douilles 4mm de connexion à la batterie	
		- un connecteur DB9 mâle pour le "bootloader" série	
		Test, validation et caractérisation de la fonction.	

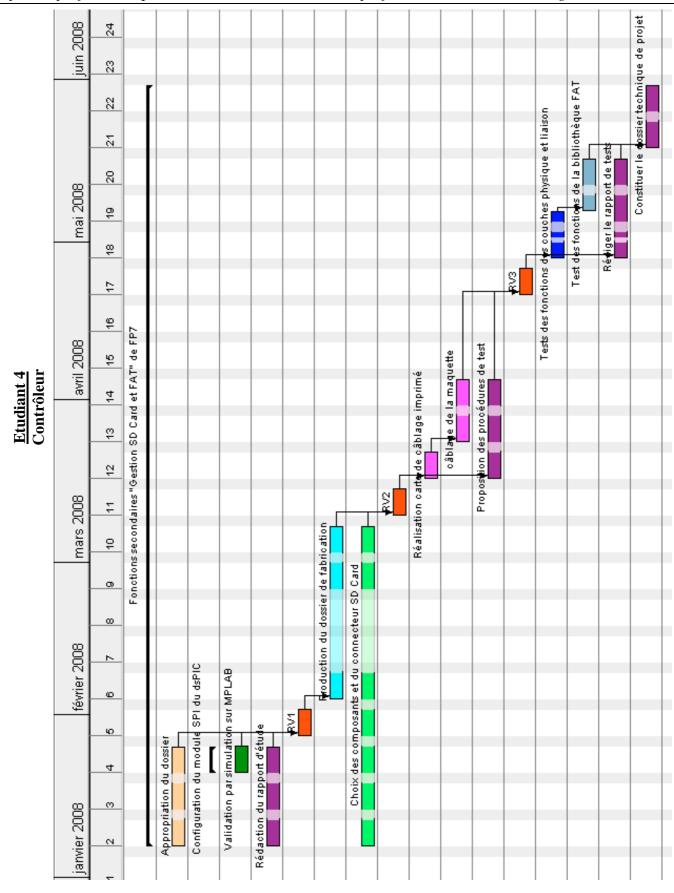
7. Exploitation pédagogique

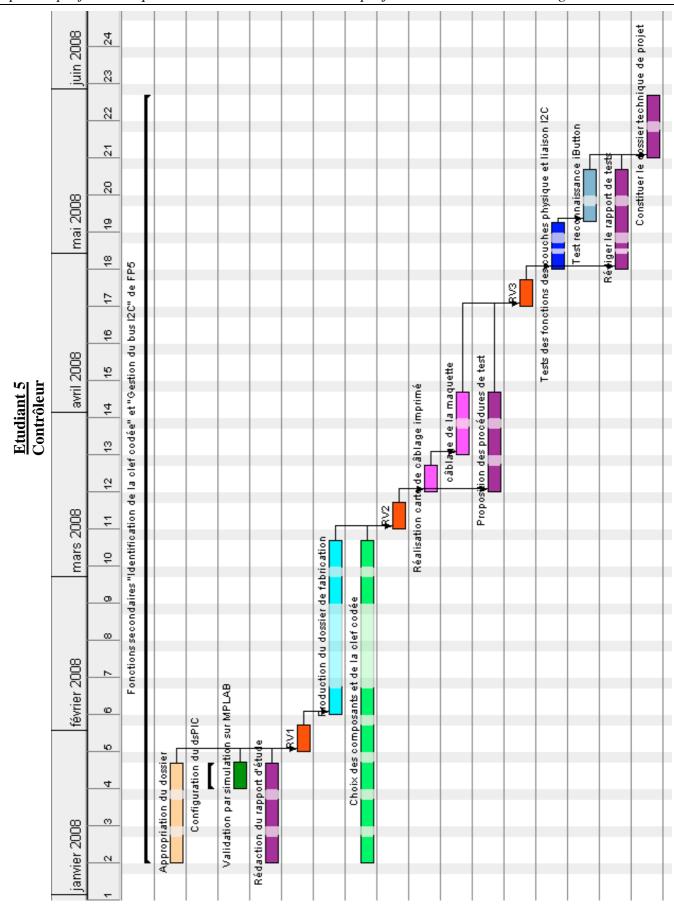

Compétences terminales évaluables																			
Tâches génériques		Adapter le logiciel à un nouveau cahier des charges		Établir des procédures de tests sur une maquette						Þ	Actio	on d	les é	tudia	ants				
	C1	C2	C3	T2	E1	E2	E 3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	
A Recherche et/ou exploitation de documents techniques en français ou en anglais relatifs à un produit.	V	(((Х	Х	Х	Х	X	Х	Х	Х	Х	X	Х	X	X	X	
B Analyse du cahier des charges du produit et extraction des spécifications associées à sa mission.	((((Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	X	
C Analyse fonctionnelle, organique et structurelle d'un système technique ou objet technique	((Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
D Élaboration d'un dossier d'aide au choix technique et économique en vue de comparer plusieurs solutions techniques	((
E Participation à l'évaluation des coûts de revient des produits élaborés par l'entreprise, à l'analyse de la valeur et au choix des solutions techniques	V	((Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	Х	
Participation à l'élaboration du schéma structurel avec choix technologiques des	(((Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
composants et justifications écrites. Établissement du dossier (schémas structurels, spécifications électriques,)	(((Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	
nécessaire à la réalisation de la maquette. Établissement du plan d'organisation technique des tâches pour réaliser tout ou		`			X	X	X	Х	X	X	X	X	Х	X	X	X	Х	X	
partie de la maquette ou du prototype. I Constitution du dossier de lancement de fabrication			4		X	Х	X	Х	Х	X	X	X	X	X	X	X	X	X	
J Suivi de processus d'achats.			V		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
K Fabrication et assemblage de tout ou partie de maquette.	V		V	Ø	Х	Х	X	Х	Х	X	Х	Х	Х	X	X	Х	X	Х	
L Suivi d'une production																			
M Réalisation et mise au point d'un module de logiciel associé à la maquette		☑		Ø	Х	X	Х	Х	Х	X	X	X	X	X	X	X	Х	Х	
N Intervention technique conduisant à la mise en conformité du produit ou de la maquette avec le cahier des charges.		Ø		☑	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	X	
O Élaboration de dossiers explicitant les tests électriques et fonctionnels à effectuer sur la maquette et validation des moyens pour les réaliser.	V	Ø	Ø	Ø	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Participation à l'élaboration des notices d'utilisation et de maintenance pour le client.	Ø	Ø	Ø	Ø															
R Vérification et validation à toutes les étapes de la conception du produit de la conformité des caractéristiques avec les spécifications du cahier des charges.			v	v	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
S Participation à l'élaboration d'un dossier destiné à la recette de la maquette				Ø	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
U Maintenance sur site et rédaction de fiches d'intervention Constitution d'un répertoire des défauts et formalisation du retour d'expérience.				Ø															

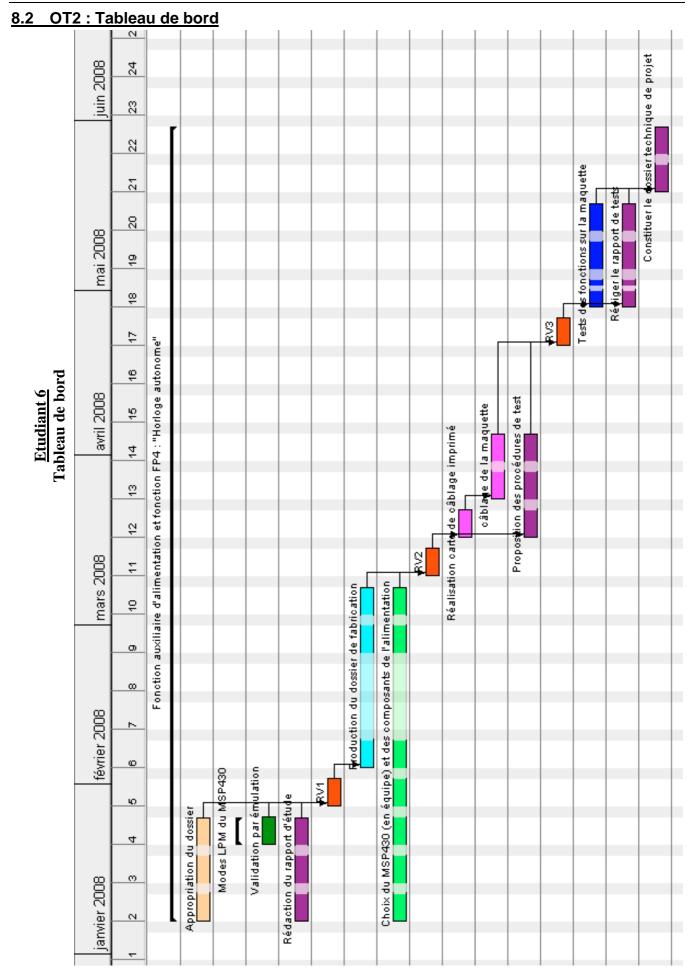

BTS Systèmes électroniques

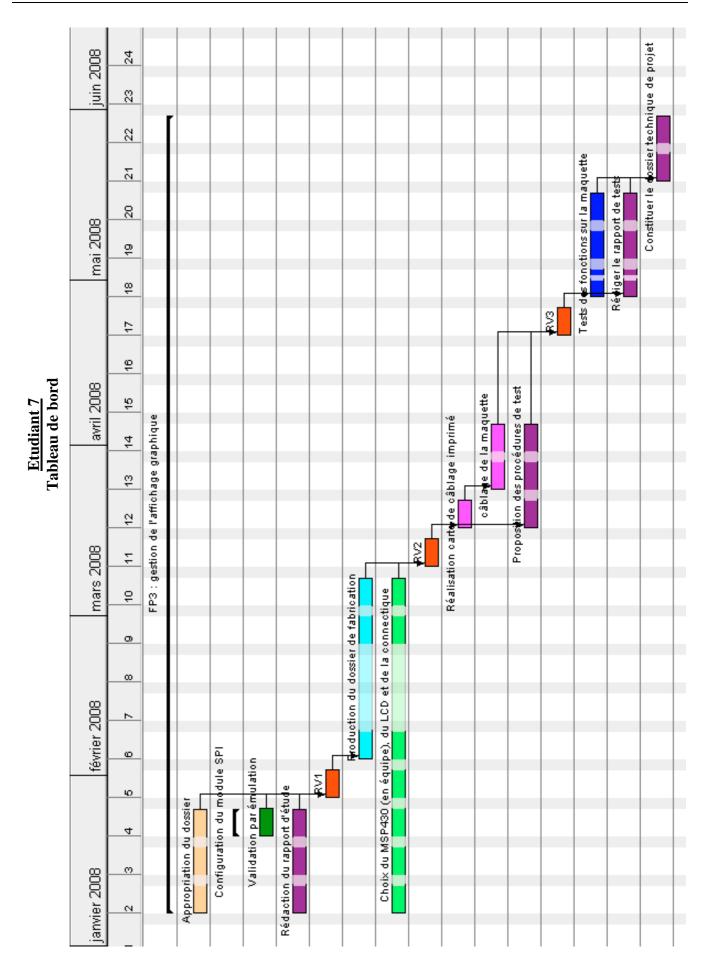
Page 40 sur 57

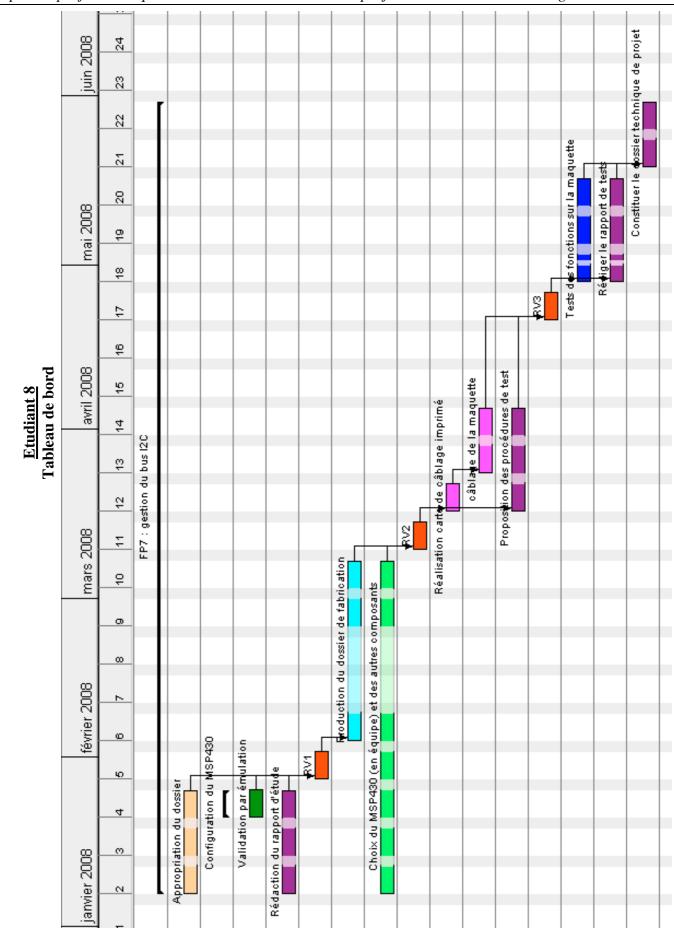

8. Planification temporelle prévisionnelle

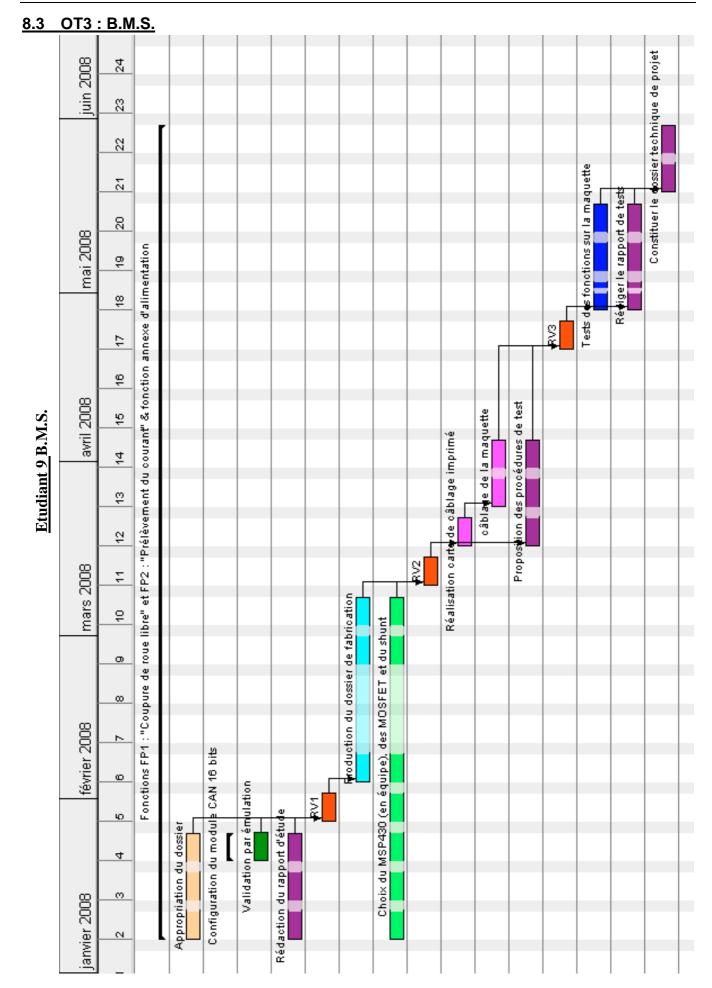

8.1 OT1 : Contrôleur

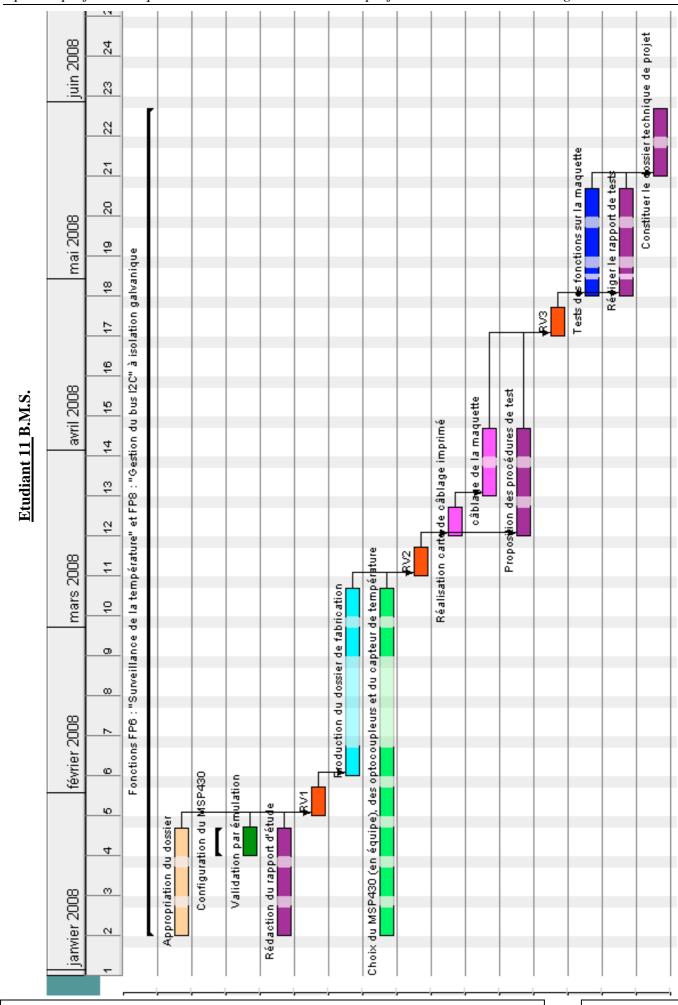




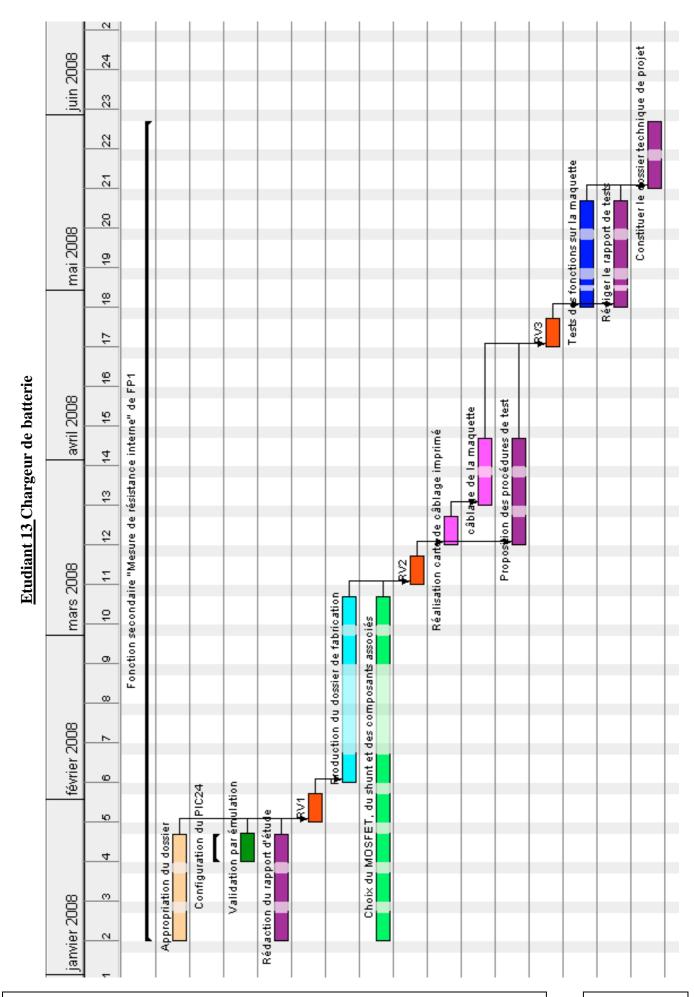

BTS Systèmes électroniques



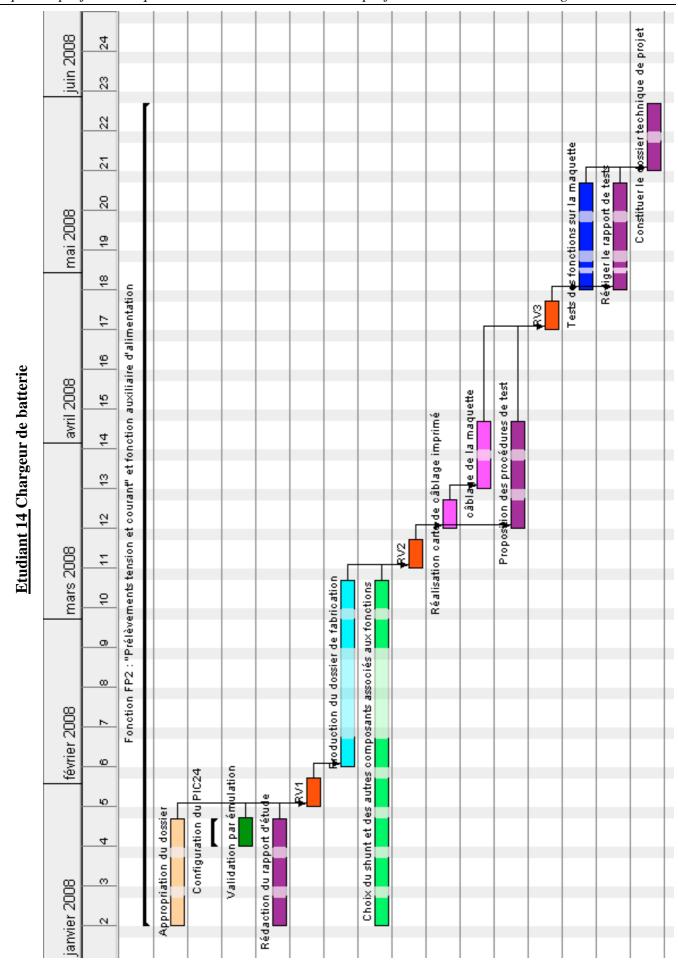








Constituer le dossier technique de projet juin 2008 24 8 22 Tests des fonctions sur la maquette 2 Fonctions FP1 : "Prélèvement des tensions", FP3 : "Surveillance de chaque élément" et FP8 : "Equilibrage des éléments en charge" Ré**∳**iger le rapport de test 8 mai 2008 6 $\overset{\circ}{\circ}$ 4 9 avril 2008 Proposition des procédures de test câblage de la maquette 5 Etudiant 10 B.M.S. Réalisation carte de câblage imprimé 4 5 $\frac{1}{2}$ mars 2008 Choix du MSP430 (en équipe), des MOSFET et des autres composant production du dossier de fabrication 6 ω février 2008 Configuration du module CAN 16 bits Validation par émulation Rédaction du rapport d'étude Appropriation du dossier janvier 2008 N



BTS Systèmes électroniques

BTS Systèmes électroniques

8.5 Calendrier prévisionnel :

Disponibilité des équipements

Remise des sujets de projet courant janvier. Début du projet :	Semaine 2
Revue N°1	Semaine 5
Revue N°2	Semaine 11
Revue N°3	Semaine 17
Remise des dossiers techniques (au chef de centre)	Début juin
Sous épreuve E6-2	

9. Condition d'évaluation pour l'épreuve E6-2

L'équipement sera-t-il disponible ? (cas du projet développé en entreprise)	oui 🗵	non 🗖	
Si non:	Comment procédera-t-on ?		

Atteintes des objectifs du point de vue client

Que devra-t-on observer à la fin du projet qui témoignera de l'atteinte des objectifs fixés, du point de vue du client :

(disponibilité de la maquette dans le centre de formation, ...)

Le "client" (le pdg de l'entreprise) sera un membre de la commission d'interrogation. L'objectif est la validation (positive ou négative) des fonctions dont les étudiants ont la charge, en vue d'une intégration par un bureau d'étude sous-traitant.

• Dans le cas du projet développé en entreprise

Recours traitante	s à une ou plusieurs entreprises sous es ?	oui 🗵 no	n 🗖
Si oui:	Liste des sous traitants :	Missions	Pilotage :
	MTA	Réalisation de cartes	CREMMEL

10. Observation de la commission de validation

(A remplir par la commission de validation	⇒ a été utilisé pa	r la Commission	Inter Acadén	s suivants : ceux list nique de validation. e / / 200		
Contenu du projet :		Défini 🗖	Insuffisam	ment défini 🛚		non défini 🗖
Choix du support	Appartient à un	des champs tec	chnologiques du RAI	P 🔲		
Problème à résoudre		Cohérent technic	quement 🗖	Pertinent / à	un niveau B	TS 🗆
Complexité technique : (liée au support ou au mo	yen utilisés)	Suffisante		Insuffisante		exagérée 🗖
Cohérence pédagogique (relative aux objectifs de	l'épreuve)			le toutes les compéte ués sur chacune des		
Planification des tâches d étudiants, délais prévus, .		Projet Défini & raisonn	able 🗖	Insuffisamment de	éfini 🗖	non défini 🗖
Les revues de projet sont- (dates, modalités, évaluat			Oui 🗖		Non 🗖	
Conformité par rapport et à la définition de l'épi			Oui 🗖		Non 🗖	
Avis formulé par la con Sujet accepté en l'état Sujet rejeté	mmission de va □ Sujet à revo	lidation: ir:	formité au Ré	férentiel de Certifica		
Motif de la commission : Nom des membres de l	a commission o	le validation int	er académic	que :		
Nom	Etabli	ssement	A	cadémie	Si	gnature
Visa de l'autorité inter	académique :		Nota :			

(nom, qualité, Académie, signature)

Ce document est contractuel pour la sous-épreuve E6-2 (Projet Technique) et sera joint au "Dossier Technique" de l'étudiant. En cas de modification du cahier des charges, un avenant sera élaboré et joint au dossier du candidat pour présentation au jury, en même temps que le carnet de suivi.

RTS	Systèmes	électro	กา่านอง

1.	1. PRÉSENTATION ET SITUATION DU PROJET DANS SON ENVIRO	NNEMENT1
	1.1 Contexte de réalisation	1
	1.2 SITUATION DU PROJET	
	1.3 OBJECTIFS PROFESSIONNELS DU PROJET	
2.	2. PRÉSENTATION DU PROJET	
3.	3. CAHIER DES CHARGES FONCTIONNEL	2
	3.1 Expression du besoin	
	3.2 Contraintes et limites d'étude	
	3.3 CARACTÉRISATION DES FONCTIONS DE SERVICE	
4.	4. ANALYSE FONCTIONNELLE INTERNE	11
	4.1 Diagrammes sagittaux	
	4.1.1 Exploitation sur un vélo :	
	4.1.2 Paramétrage du contrôleur et du BMS au service technique de VEL	
	4.1.3 Charge et contrôle de la batterie au service technique de VELECTR	
	4.2 SCHÉMAS FONCTIONNELS DE NIVEAU II	
	4.2.1 OT1 : Contrôleur	
	4.2.2 OT2 : Tableau de bord	
	4.2.3 OT3 : B.M.S	
	4.2.4 OT4 : Chargeur "LiPo"	
5	5. MOYENS PRÉLIMINAIRES DISPONIBLES ET CONTRAINTES DE	RÉALISATION 18
٠.		
	5.1 SPÉCIFICATIONS	
	5.1.1 OT1 : Contrôleur 5.1.2 OT2 : Tableau de bord (TdB)	
	5.1.2 OT2 : Tableau de bord (TdB)	
	5.1.4 OT4 : Chargeur "LiPo"	
	5.2 CONTRAINTES LIÉES À L'ARCHITECTURE MATÉRIELLE OU LOGICIELLE	
	5.2.1 Principaux logiciels mis en œuvre	
	5.2.2 Principales structures/composants à valider	
	5.2.3 Principales fonctions logicielles à valider	
	5.2.4 Organisation matérielle	
	5.2.5 Organisation logicielle	
	5.3 CONTRAINTES SPÉCIFIQUES LIÉES À L'ENVIRONNEMENT	31
	5.4 Contrainte économique	
	5.5 DOCUMENTS ET MOYENS TECHNOLOGIQUES MIS À DISPOSITION	
	5.6 Exigences qualité à respecter	
	5.6.1 Exigences qualité sur le produit à réaliser	
	5.6.2 Exigences qualité sur le développement	
	5.6.3 Exigences qualité sur la documentation à produire	
	5.6.4 Exigences qualité sur la livraison	
	•	
6.	6. RÉPARTITION DES TÂCHES PAR ÉTUDIANT	35
7.	7. EXPLOITATION PÉDAGOGIQUE	40
8.		
	8.1 OT1 : Contrôleur	
	8.2 OT2: TABLEAU DE BORD	
	8.3 OT3 : B.M.S.	
	OT4 : CHARGEUR DE BATTERIE	
	8.5 CALENDRIER PRÉVISIONNEL :	
9.	9. CONDITION D'ÉVALUATION POUR L'ÉPREUVE E6-2	55
10	10 ODCEDNATION DE LA COMMISSION DE VALIDATION	54