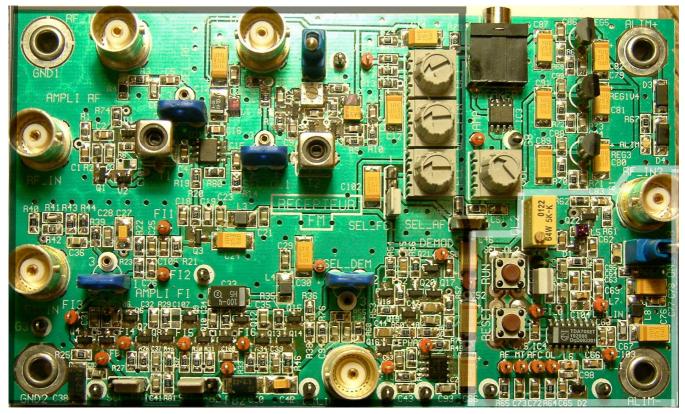
RADIO FM *T.P. AMPLIFICATEUR DIFFÉRENTIEL DE BASE*

Introduction:

De nombreuses fonctions sont nécessaires à la réalisation d'un récepteur à modulation de fréquence haute-fidélité. L'une des plus importante est l'amplification en fréquence intermédiaire (ampli FI) car les signaux produits par l'antenne sont très faibles; le récepteur doit fonctionner correctement pour des niveaux de quelques dizaines de microvolts seulement. Spécifications de l'ampli FI :

- Gain en petits signaux : supérieur à 80dB (amplification supérieure à 10000)
- Gamme de fréquence : gain constant (à 3 dB près) de 20kHz à 120kHz
- Comportement aux niveaux forts :
 - la valeur moyenne du signal de sortie est indépendante du niveau d'entrée et vaut 1,4V environ
 - l'amplitude de la partie variable du signal de sortie est limitée à 1V environ.

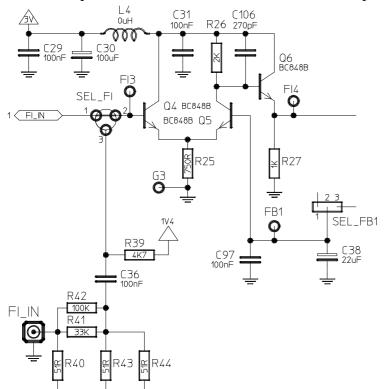
L'amplificateur FI est constitué de 4 amplificateurs différentiels à transistors, tous identiques, mis en cascade pour obtenir le gain spécifié. L'objet de ce TP est cet amplificateur différentiel de base, l'ampli FI complet sera testé ultérieurement.


Conditions:

- Étude de la structure différentielle réalisée en TD.
- Travail en binôme en salle spécialisée en 2 séances de 4 heures (§ 1, 2 et 3 puis §4).

1. Prise en main de la maquette d'étude

Il s'agit de vérifier rapidement le bon fonctionnement de la maquette d'étude. Elle comporte 2 récepteurs FM indépendants :


- Le premier réalisé autour du circuit intégré spécialisé TDA7088 de Philips (cadre blanc).
- Le deuxième réalisé avec des composants discrets et qui reprend les structures internes du TDA7088 (cadre gris foncé).

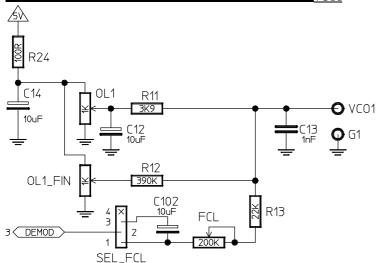
- Les autres structures constituent un amplificateur audio pour casque (sortie sur prise "jack") et 3 régulateurs en boîtier TO92 produisant les sources nécessaires (5V, 3V et 1V4).
- → Noter le numéro de la carte d'étude pour reprendre la même pour la 2° séance de TP.
- → Placer les cavaliers et les commutateurs comme sur la photo précédente.
- → Régler l'alimentation à 9V environ et la connecter à la maquette via les douilles ALIM+ et ALIM-. La LED "ALIM" doit s'allumer. La consommation est de l'ordre de 50mA.
- → Test du récepteur à composants discrets :
 - Connecter l'écouteur sur la prise "jack"
 - Connecter une antenne sur la BNC "RF_IN" (un simple fil peut suffire).
 - Régler l'intensité sonore avec le potentiomètre "VOL" (pour volume).
 - Rechercher des stations de radiodiffusion avec les potentiomètres "OL1" et "OL1_fin" (réglage fin).
- → Test du récepteur à TDA7088 :
 - Inhiber le récepteur à composants discrets : basculer l'inverseur EN_OL vers le bord de la carte.
 - Alimenter le récepteur à TDA7088 : basculer l'inverseur "ON_7088" vers l'intérieur de la carte. La LED "7088_ON" s'allume.
 - Connecter une antenne sur la BNC "RF IN2"
 - Connecter l'entrée de l'ampli audio sur ce récepteur: déplacer le cavalier "SEL_AF" sur 1-2
 - Utiliser les boutons poussoirs "RESET" et "RUN" pour rechercher les stations.
 - Couper l'alimentation de ce récepteur.

2. Présentation de l'amplificateur différentiel de base

Le schéma partiel ci-dessous est extrait du schéma complet donné à la fin de ce document.

Le signal à amplifier est appliqué sur la base de Q4. Dans une utilisation normale (récepteur FM) le cavalier SEL_FI est dans la position représentée pour sélectionner le signal FI_IN. Celui-ci provient de l'antenne via une fonction de transposition en fréquence (ex : 100MHz → 70kHz).

Pour ce TP, le cavalier SEL_FI est placé en position 2-3 pour permettre l'injection d'un signal depuis la BNC FI IN.


Dans ce cas, la base de Q4 est polarisée à 1,4V environ via la résistance R39. La liaison avec l'entrée FI_IN est de type "AC" (capacitive).

Pour ce TP, une résistance de 220Ω est soudée en // sur R42 pour diminuer l'atténuation de l'atténuateur.

Dans un prochain TP, nous verrons et étudierons la structure originale de polarisation de la base de Q5. **Dans ce TP, le cavalier SEL_FB1 est retiré**. Toutefois, il sera enfiché dans une seule broche de la barrette à 3 contacts pour éviter la perte du cavalier.

Une des activités principales du TP consiste à faire varier la tension continue de polarisation de la base de Q5. On utilise pour ce faire la structure conçue pour régler la tension d'accord du récepteur à composants discrets.

Structure de réglage de la tension d'accord V_{VCO1}

Le cavalier SEL_FCL est en position 3-4 pour éviter toute influence du signal DEMOD.

La cellule R24-C14 filtre les résidus de bruit présents sur l'alimentation 5V.

Le potentiomètre OL1 associé aux résistances R11 et R12 réalise le réglage "grossier" de la tension V_{VCO1} (de 0V à 4,1V environ).

Le potentiomètre $OL1_FIN$ associé aux résistances R12 et R11 réalise le réglage "fin de la tension V_{VCO1} (de $\pm 45 mV$ environ).

- ①: Les modes opératoires de chaque relevé seront décrits en détail.
 - Le fichier Excel "TP_Ampli_diff_new.xls" disponible sur le serveur contient des tableaux de mesures vides et des graphes déjà paramétrés pour certains relevés de ce TP.

3. Caractéristiques statiques

Les tests proposés permettent de :

- Déterminer les conditions de polarisation idéales
- Déterminer le domaine de linéarité de l'amplificateur
- Mesurer le coefficient d'amplification maximum
- Relever le comportement de l'amplificateur aux signaux forts

Note: toutes les tensions sont référencées par rapport à la masse, sauf indication contraire.

3.1 Câhlage

Il s'agit de connecter le point test FB1 (base de Q5) au point test VCO1 (tension d'accord).

- → Connecter le point test VCO1 à un voltmètre DC via un grip-fil pour contrôler l'étendue de réglage de V_{VCO1}.
- \rightarrow Connecter le point test FB1 au même voltmètre via un grip-fil. La tension V_{VCO1} ne devrait être que très peu perturbée.

3.2 Mesures

3.2.1 Point de repos

- \rightarrow Mesurer avec précision V_{FI3} .
- \rightarrow Ajuster V_{VCO1} pour obtenir le plus exactement possible $V_{FB1} = V_{FI3}$. Noter cette valeur V_{FB10} .
- \rightarrow Mesurer alors avec précision la valeur de repos V_{FI4_0} et constater que $V_{FI4_0} \approx V_{FI3}$. Observer l'influence de la température en touchant individuellement les transistors Q4 et Q5. Expliciter le comportement observé.

3.2.2 Caractéristique de transfert

Utiliser le tableau de mesure prévu pour cette question et la feuille "Transfert" dans "TP_Ampli_diff_new.xls".

- → Copier le fichier "TP_Ampli_diff_new.xls" dans le dossier D:\TS1EL
- \rightarrow Relever la tension V_{FI4} en fonction de $V_D = V_{FI3} V_{FB1}$ de -120 mV à +120 mV. Câbler le premier voltmètre pour mesurer directement cette tension. Un 2ième voltmètre mesure V_{FI4} .

RADIO FM – TP Amplificateur différentiel de base

Note : les 2 questions suivantes sont résolues en utilisant les fonctions de calcul du tableur Excel.

- → Déterminer la fonction polynomiale de degré 5 qui épouse au mieux la caractéristique de transfert.
- \rightarrow Calculer la dérivée par rapport à X (en fait V_D) de cette fonction mathématique (menu : "graphique" \rightarrow Ajouter une courbe de tendance...: choisir la courbe et cocher l'option de visualisation). La fonction dérivée représente l'amplification "petits signaux" au point considéré.
- → Tracer cette caractéristique dans la feuille "transfert" en affectant la colonne Ad avec l'équation de la fonction "dérivée".
- \rightarrow Relever Ad_{MAX} , l'amplification différentielle maximum de l'amplificateur.
- → Évaluer le domaine de fonctionnement "linéaire" de l'amplificateur. Ce domaine est défini par une diminution de 10% de l'amplification max.
- \rightarrow Noter les valeurs de saturation de V_{FI4} . Montrer qu'elles sont sensiblement symétriques à la valeur de repos V_{FI40}

4. Caractéristiques dynamiques

Objectifs : les tests proposés permettent de :

- Optimiser le point de repos de l'étage différentiel.
- Mesurer le gain "petits signaux" dans la bande passante.
- Évaluer le comportement aux signaux forts (courbes de linéarité et saturation).
- Mesurer la bande passante "petits signaux".

4.1 Ajustement du point de repos

- \rightarrow Connecter un voltmètre sur FB1 et ajuster V_{FB1} à la valeur V_{FB10} .
- → Régler le générateur de signaux comme suit : forme Sinus, fréquence 70kHz. Utiliser la sortie "synchro" du générateur et l'entrée "Ext" de l'oscilloscope pour synchroniser ce dernier.
- \rightarrow Observer, via une sonde, le signal de sortie V_{FI4} à l'oscilloscope dans le domaine **temporel**. Augmenter l'amplitude du générateur jusqu'à constater un début d'écrêtage.
- \rightarrow Observer et commenter l'influence de la tension de polarisation V_{FB1} (jusqu'à $\pm 50 \text{mV}$ de part et d'autre de V_{FB10}).
- \rightarrow Réajuster V_{FB1} à la valeur V_{FB10} et noter l'amplitude de la composante variable du signal de sortie.
- → Observer le signal de sortie dans le domaine **fréquentiel** en activant la fonction FFT de l'oscilloscope. Choisir une fréquence d'échantillonnage permettant la mesure des niveaux du fondamental et des 2 premiers harmoniques, tout en respectant le théorème de Shannon. Utiliser la fenêtre "flat top" pour optimiser le calcul des niveaux.
- → Imprimer le spectre obtenu.
- \rightarrow Optimiser l'ajustement de V_{FBI} . Justifier le mode opératoire.
- → Imprimer le nouveau spectre obtenu et indiquer les niveaux des premiers harmoniques.

4.2 Comportement aux signaux forts

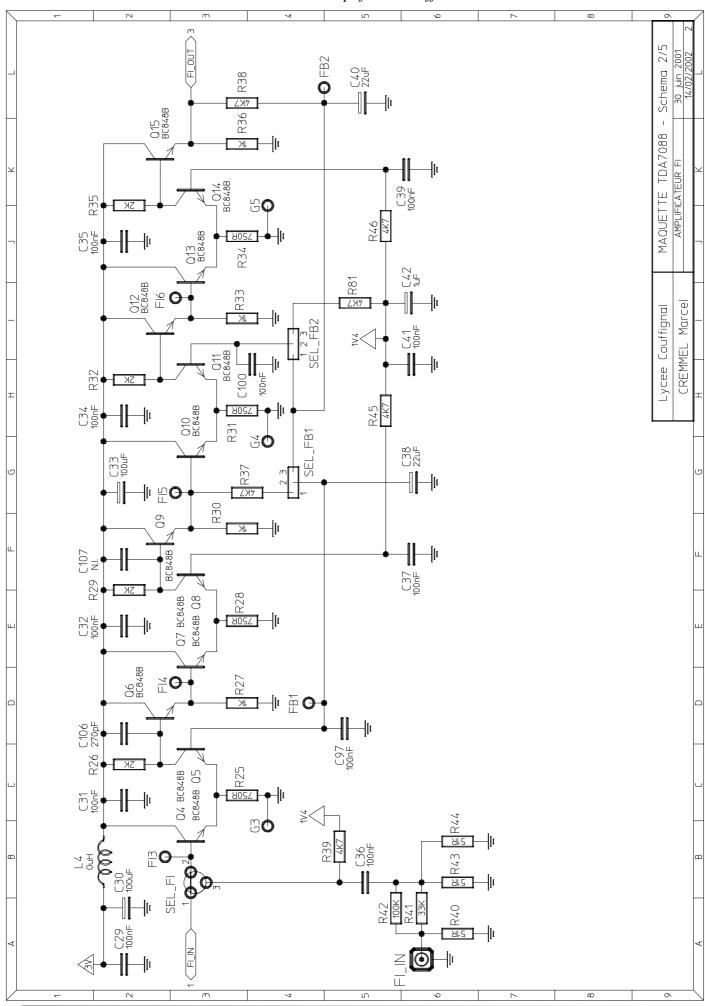
- \rightarrow Mesurer les niveaux absolus d'écrêtage V_L et V_H (par rapport à 0V) et l'amplitude crête à crête de V_{FI4} à l'oscilloscope.
- \rightarrow Imprimer 3 chronogrammes caractéristiques de V_{FI3} et V_{FI4} : pas de distorsion, début d'écrêtage et écrêtage conséquent. Les sensibilités verticales seront conservées pour faciliter les comparaisons.
- \rightarrow Relever la valeur moyenne V_{FI4moy} de V_{FI4} , en fonction de l'amplitude du signal d'entrée (0V à IV)
- → Conclure quant à la mise en cascade directe (non capacitive) d'amplificateurs du même type.

4.3 Courbes de linéarité

Utiliser de préférence l'analyseur audiofréquence PANASONIC VP7722P. A défaut, les valeurs efficaces des composantes variables seront mesurées à l'oscilloscope numérique.

Les mesures seront réalisées à la fréquence de 10kHz (analyseur audio) ou 70kHz (oscilloscope).

L'analyseur audio PANASONIC permet les mesures simultanées des niveaux d'entrée et de sortie (en V ou en dBV) et calcule le gain.


- \rightarrow Le cas échéant, configurer et câbler l'analyseur audio pour afficher le niveau de V_{FI4} en dBV et le gain. Valider le filtre passe-haut 400Hz.
- ightarrow Relever les courbes de linéarité $G_{FI} = 20 \times Log_{10} \left(\frac{V_{FI4eff}}{V_{FI3eff}} \right) = f \left(V_{FI3eff} \right)$ et $V_{FI4eff} = f \left(V_{FI3eff} \right)$

Utiliser les fiches "Linéarité_PANAx" ou "Linéarité_OSCx" dans "TP_Ampli_diff_new.xls". Les valeurs efficaces citées ne tiennent pas compte des éventuelles composantes continues.

- → Justifier les traitements mathématiques réalisés par le tableur Excel pour obtenir ces graphes.
- → En déduire le point de compression : niveau d'entrée pour lequel le gain a diminué de 1dB par rapport à sa valeur maximum. Comparer avec le domaine de linéarité déterminé au paragraphe §3.3.2.

4.4 Bande passante "petits signaux"

- → Mesurer la bande passante "petits signaux".
- → Quelles sont les causes des fréquences de coupure basse et haute ?

Page 6/6